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Abstract

Background:

Our investigations of what exists might seduce us to have little to say about an objective reality,
in which nothing exists .

Methods:

The usual rules of tensor algebra have been used.

Results:

Time is equivalent to gravitational field. The four basic field of nature are geometrized from
another point of view. The geometrical structure of the fourth basic field of nature is identified.
There is some evidence that pure non locality is a feature of an objective reality in one space-time
dimension.

Conclusion:

Theoretically, the beginning of our world out of an empty negative appears to be possible.

Keywords: Energy; Time; Space; Cause; Effect; Causal relationship k; Causality; Causation

1. Introduction

I have already tried to provide essential answers about the fundamental relationship between energy,
time and space in numerous publications of mine. I come back to this topic again, because my former
presentation of this subject does not satisfy more. In addition, new theoretical approaches have arisen to
proof these relationships from another and different point of view. While following the time-honoured
principle of going step by step from the known to the unknown, a new and more differentiated focus
on widely discussed notions like energy, time and space might be of help to widen our own view on
these entities.

Energy,

pure energy as such, existing independently and outside of human mind an consciousness, objec-
tively and real is an energy without any further determination, an energy which is in its own self equal
only to itself. In point of fact, the other side of pure energy is that pure energy is also not unequal
with respect to another. Pure energy has no difference within itself and pure energy has no difference
outwardly. If anything concrete or any determination or content could be identified in pure energy as
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distinct, or if pure energy were posited by such a determination as distinct from an other, pure energy
would thereby fail to hold fast to its purity. In last consequence, pure energy is equally pure emptiness
and at the end indeterminateness as such. However, it is not only energy that determines objective
reality. Time itself is given too. Historically, investigations into the nature of time and discussions of
various issues related to time have had an important impact on science as early as a very long time ago.

Time,

pure time, is similar to pure energy just simple equality with itself, complete emptiness, complete
absence of any determination and content, a negation which is equally devoid of any reference. Pure
time is the lack of all distinction within itself. No wonder that pure time is the same determination
or rather the absence of any determination, and thus altogether the same as what pure energy is. As
outlined in view words before, pure energy and pure time are therefore the same. It is noteworthy and
necessary to consider that neither energy nor time, but rather that energy has passed over into time
and that time has passes over into energy. In spite of all equality and besides of all, it is important to
recognize that pure energy and pure time are at the end not without any distinction. At the end, it is
more likely that pure energy and pure time are not the same. The principal question is how it is possible
that pure energy and pure time are identical and yet also different too? Pure energy and pure time are
absolutely distinct even if equally unseparated and inseparable. Each of both, each of pure energy and
pure time, immediately vanishes into its own opposite.

Space,

is this movement of the immediate vanishing of pure energy into pure time or of the one into its
own other and vice versa. However, such an understanding of the relationship between energy and time
as stated before is not without deeper issues and without great concern. In contrast to the previously
outlined and according to the first law of thermodynamics (see Clausius, 1867, du Châtelet, 1740)
energy can be transformed from one energy to another, but can be neither destroyed nor created. How-
ever, time itself is not energy, it is the other of energy. Under conditions where energy passes over into
time or time into energy our impression solidifies that the first law of thermodynamics is threatened or
even violated. The question therefore arises again for ourselves, how can we discover with confidence
that which is the truth but still hidden to us? How can we enlighten the epistemiological darkness?
No logical alternative is available, space as the unity and the struggle between energy and time is a
movement in which these two, pure energy and pure time, are distinguished too. However, it would
be necessary to consider that it is this distinction which immediately dissolved itself too. Authors cus-
tomary oppose time to energy and vice versa in an inappropriate way. It is to be considered that energy
as an already determined and self-organised entity distinguishes itself from another energy. In other
words, the time which is opposed to energy is also the time of a certain or concrete energy, a determi-
nate time. Here, time should be viewed in its simplicity as pure time. Pure time is non-energy and as
such deemed to oppose pure energy. In point of fact, in pure time as non-energy there is contained the
reference to pure energy too. In other words, we have reason to suppose that non-energy is both, pure
time and equally its own negation, its own other, pure energy. At the end all, pure time and pure energy
are united in space.
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2. Material and methods

Scientific knowledge and objective reality are more than only interrelated. It cannot be repeated
often enough that objective reality or processes of objective reality is the foundation of any scientific
knowledge. In point of fact, seen by light, grey is never merely simply grey. In general, human
experience teaches us that a high mountain can be conquered by different paths.

2.1. Material

In general, it is appropriate to ensure as much as possible a broader consideration of a research
question and to take into account the different facets and viewpoints of an issue investigated in order
to reach a goal.

2.2. Methods

Definitions should help us to provide and assure a systematic approach to a scientific issue. It also
goes without the need of further saying that a definition as such need to be logically consistent and
correct.
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2.2.1. Basic definitions of special theory of relativity

Definition 2.1 (Energy).

Let E denote energy (see Einstein, 1905b) which is existing objectively and real outside of human
mind and consciousness as viewed from the point of view of the stationary observer R. It is

E = M× c2 (1)

where M is the matter and c is the speed of the light in vacuum.

Definition 2.2 (Matter).

Let M denote matter which is existing objectively and real outside of human mind and consciousness
as viewed from the point of view of the stationary observer R. In our understanding of the matter we
follow Einstein’s explanations very closely.

“... ‘Materie’bezeichnet ... nicht nur die ‘Materie’im üblichen Sinne, sondern auch das
elektromagnetische Feld. ” (Einstein, 1916, p. 802/803)

In broken English, ‘matter denotes ... not only matter in the ordinary sense, but also the electro-
magnetic field. ’It is worth noting that the equivalence of matter (M) and energy (E) lies at the core of
today’s physics and has been described by Einstein as follows:

“Gibt ein Körper die Energie L in Form von Strahlung ab, so verkleinert sich seine Masse um L/V2

... Die Masse eines Körpers ist ein Maß für dessen Energieinhalt ”

(see also Einstein, 1905c, p. 641)

In general it is

M ≡ E
c2 (2)

(see also Einstein, 1905c, p. 641)

where M denotes the matter(see also Tolman, 1912) and c is the speed of the light in vacuum. In other
words, Einstein is demanding the equivalence of matter and energy as the most important upshot of his
special theory of relativity.
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“Eines der wichtigsten Resultate der Relativitätstheorie ist die Erkenntnis,

daß jegliche Energie E eine ihr proportionale Trägheit (E/c²) besitzt”

(see also Einstein, 1912, p. 1062)

Definition 2.3 (Anti energy).

Let E denote non-energy or anti energy, the other of energy, the complementary of energy, the
opposite of energy which is existing objectively and real outside of human mind and consciousness as
viewed from the point of view of the stationary observer R. It is

E = S−E (3)

Definition 2.4 (Time).

Let t denote time, the other of anti-time, the complementary of anti - time, the opposite of anti-time
which is existing objectively and real outside of human mind and consciousness as viewed from the
point of view of the stationary observer R. Let t denote anti time. It is

t = S− t (4)

Definition 2.5 (Anti time).

Let t denote non-time or anti-time, the other of time, the complementary of time, the opposite of
time which is existing objectively and real outside of human mind and consciousness as viewed from
the point of view of the stationary observer R. It is

t = S− t (5)

Theoretically, anti-time is the other of time, the complementary of time, the opposite of time.

Definition 2.6 (Gravitational field).

Let g denote the gravitational field. The gravitational field g is quite often defined by the gravita-
tional potential. Nonetheless, it is necessary to distinguish the gravitational field and the gravitational
potential, both are not identical. Even if it is a little questionable to refer so often to Einstein’s position,
as long as the same is logically sound, it is also very difficult to simply ignore the same. Although it
is much too often overlooked today, let us again refer to Einstein’s understanding of the relationship
between matter and gravitational field. Einstein defined the gravitational field ex negativo as follows.

“Wir unterscheiden im folgenden zwischen ‘Gravitationsfeld’und ‘Materie’, in dem Sinne, daß
alles außer dem Gravitationsfeld als ‘Materie’bezeichnet wird, also nicht nur die ‘Materie’im

üblichen Sinne, sondern auch das elektromagnetische Feld. ”

(Einstein, 1916, p. 802/803)
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Again, Einstein’s position translated into English: ‘We distinguish in the following between ‘grav-
itational field’and ‘matter’, in the sense that everything except the gravitational field is regarded as
‘matter’, that is not only ‘matter’in the ordinary sense, but also the electromagnetic field.’The follow-
ing and only symbolic figure might illustrate the relationship between matter and gravitational field in
more detail.

Gravitational field (g)

M a t t e r ( M )

U

Mathematically, the gravitational field is expressed as follows:

g =U −M (6)

Definition 2.7 (Space).

Let S denote the space which is existing objectively and real outside of human mind and conscious-
ness as viewed from the point of view of the stationary observer R. We assume that energy and time
are determining space. It is

S = E + t (7)

In the further progress of the research it should be possible to demonstrate beyond any reasonable
doubt that

S− t = E (8)

and that the most general formulation of the Einstein field equations could be(
S×gµν

)
−
(
t ×gµν

)
=
(
E ×gµν

)
(9)

where gµν is the metric tensor. Energy passes over into time and vice versa. Time passes over into
energy. However, equation 8 has another aspect too. It is equally

(S×S)− (S× t) = (S×E) (10)

or C2 −a2 = b2 and as a logical consequence also(
(S×S)×gµν

)
−
(
(S× t)×gµν

)
=
(
(S×E)×gµν

)
(11)

The relationship between Pythagorean theorem and equation 10 is illustrated in more detail by figure
1 (see also theorem 3, page 23).
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b                      b          a                       a

b                                                           a

S      S2 = S ✕( E + t )         S

S

  b2    =    S  ✕  E                a2  =    S  ✕  t

△   = ✓(E ✕ t)

     E               t

Figure 1. Space S, expectation values of energy (E) and time (t) and Pythagorean theo-
rem.

Definition 2.8 (U).

Let U denote the unity and the struggle between matter and gravitational field which is existing
objectively and real outside of human mind and consciousness as viewed from the point of view of the
stationary observer R. It is

U =
S
c2 = M+g (12)
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2.2.2. Extended definitions of special theory of relativity

Definition 2.9 (Energy and special theory of relativity). Let r E t denote the total or relativistic (see
Lewis and Tolman, 1909) energy 1 of an (quantum mechanical) entity, at a certain run of an experiment
t and is dependent on the relative velocity v of an observer. Let 0 E t denote the rest energy of an entity,
at a certain run of an experiment t. The invariant mass 0 m t (also called rest mass) which is determined
by rest energy is an invariant quantity which is the same for all observers in all reference frames. Let
w E t denote the electromagnetic wave energy of an entity, at a certain run of an experiment t. Let rp E t
denote the relativistic potential energy (see Barukčić, 2013), let rk E t denote the relativistic kinetic
energy (see Barukčić, 2013).

The relativistic momentum, denoted as r p t, is defined as

(r pt) = (rmt)× (v) (13)

where v is the relative velocity between observers. The energy of an electromagnetic wave, denoted as
w E t, is derived as

(wE t) = (r pt)× (c) = (rmt)× (v)× (c) (14)

where c is the speed of the light in vacuum. In general, it is

(rE t) =
(

rpE t
)
+(rkE t) (15)

and the usual energy momentum relation(
(rE t)× rpE t

)
+((rE t)× rkE t) = (rE t)× (rE t) (16)

The invarinat or rest energy (see figure 2), denoted as (0E t), is given as

(0E t)
2 = (rE t)×

(
rpE t

)
(17)

The relativistic potential energy, rp E t, is given as

(
rpE t

)
=

(0E t)
2

(rE t)
=

(
1− v2

c2

)
× (rE t) (18)

Furthermore, the energy of a electromagnetic wave (see figure 2), denoted as (wE t), is given as

(WE t)
2 = (rE t)× (rkE t) (19)

The relativistic kinetic energy (see figure 2), denoted as rk E t, is given as

(rkE t) =
(WE t)

2

(rE t)
=

(rmt)× (v)× (c)× (rmt)× (v)× (c)
(rmt)× (c)× (c)

= (rmt)×
(

v2
)
= (r pt)× (v) (20)

1Lewis, Gilbert N. and Tolman, Richard C. (1909), ”The Principle of Relativity, and Non-Newtonian Mechanics” , Proceedings of
the American Academy of Arts and Sciences, 44 (25): 709–726.doi:10.2307/20022495
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We have very convincing arguments to assume that the concept of vis viva (see Leibniz, 1695) as put
forward by Leibniz and the notion relativistic kinetic energy are identical. The relationship before
and their inner connection to the Pythagorean theorem are view by figure 2 in more detail.

rEt

rEt

0Et2

wEt2

wEt

wEt

0Et

0Et

WEt
2                     

0Et
2

rkEt

rpEt

Figure 2. Pythagorean theorem and Einstein’s special theory of relativity (Einstein’s
triangle).

The usual energy momentum relation has been the foundation of many relativistic wave equations. The
normalised energy momentum relation is given as(

(0E t)
2

(rE t)2

)
+

(
(wE t)

2

(rE t)2

)
=

(
(0mt)

2

(rmt)2

)
+

(
(v)2

(c)2

)
=+1 (21)

while

p
(

rpE t
)
=

(
(0E t)

2

(rE t)2

)
= 1−

(
(v)2

(c)2

)
(22)

can be understood as the probability of finding a certain particle local. The next figure might provide
us with an simplified overview.
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W a v e (wE t)
2

P a r t i c l e (0Et)
2

Energy (rE t)
2

Depending upon the experimental conditions and the measuring device used, the wave energy (wE t)
might change, or particle’s energy (0E t) might change (i. e. collision experiments in particle physics)
et cetera. In any case, the extent of the interaction between a measuring device and an entity to be
measured can be determined accurately. Nonetheless, it does not make any sense at all to assume that
a measuring device is only a measuring device if the same measuring device generates by an act of
measurement the entity which has to be measured. In this respect a remark to the ordinary matter and
the electromagnetic field might be permissible. It is

(rE t) = (rE t)× (1+0) =

(
1− 2

√
v2

c2 +
2

√
v2

c2

)
× (rE t) =

1−
2

√
v2

c2

× (rE t)


︸                              ︷︷                              ︸
Oridinary energy/matter a E t

+

 2

√
v2

c2

× (rE t)


︸                        ︷︷                        ︸
Electromagnetic wave w E t

= (aE t)+(wE t) (23)

where aE t is the energy of ordinary matter/energy and wE t is the energy of the electromagnetic
field/wave. Based on equation 23 , it is

(aE t) =

1−
2

√
v2

c2

× (rE t)


︸                              ︷︷                              ︸
Oridinary energy/matter a E t

=

1−
2

√
v2

c2

×h× r f t (24)

where aE t might denote “Alltagsenergie ”or ordinary energy/matter, h is Planck’s constant and r f t is
the frequency. The total or relativistic energy rE t is determined as

rE t =
aE t(

1− 2

√
v2

c2

) (25)

The relationship between “rest energy ”, denoted as 0E t and ordinary energy aE t is given as

(0E t) =

 2

√
1− v2

c2

× (rE t)


︸                              ︷︷                              ︸

rest energy/matter 0 E t

=

(
2

√
1− v2

c2

)
(

1− 2

√
v2

c2

) × aE t (26)

These relationships are necessary to be considered at any measurement and especially in cosmology.
Equation 24 is the natural foundation of the Doppler effect (see Doppler, 1842, Voigt, 1887) and is
illustrated by the following picture in more detail.

CAUSATION ISSN: 1863-9542 https://www.doi.org/10.5281/zenodo.7316360 Volume 18, Issue 4, 5–141

https://portal.issn.org/resource/ISSN/1863-9542
https://www.doi.org/10.5281/zenodo.7316360


16

Electromagnetic wave (wE t)

Ordinary matter/energy (aEt)

Energy (rE t)

Let us assume that quantum theory is (in principle) a (universal) theory which is applicable (in prin-
ciple) to all physical systems including our earth-moon system too. This could imply that a linear
evolution of quantum states applied to macroscopic objects might routinely lead to superpositions of
macroscopically distinct objects. Based on equation 23, this is not completely absurd. However, var-
ious approaches to what is called the ‘Measurement Problem’propose contradictory answers to the
previous and similar questions. There are, however, various ways of approaching this issue. Normalis-
ing equation 23, it is (

aE t

rE t

)
+

(
wE t

rE t

)
=+1 (27)

Multiplying by the Schrödinger equation (Schrödinger, Erwin Rudolf Josef Alexander, 1926), it is(
aE t

rE t
× (H ×Ψ)

)
+

(
wE t

rE t
× (H ×Ψ)

)
= H ×Ψ (28)

It is rE t = H = i×ℏ× ∂

∂ t
, equation 28 becomes

(aE t ×Ψ)+(wE t ×Ψ) = H ×Ψ (29)

or in the quantized version1−
2

√
v2

c2

×
(

i×ℏ× ∂

∂ t

)×Ψ

+

 2

√
v2

c2

×
(

i×ℏ× ∂

∂ t

)×Ψ

= H ×Ψ (30)

For our purposes, the most important features of equation 30 is that it is deterministic, linear and that
the same provides a possibility to describe macroscopic objects too. Among the circumstances in
which this might happen are, as an example, experimental set-ups where two persons, A like Alice and
B like Bob, are measuring the existence of our moon.

Example.

Person A (i. e. Alice) measures the moon of our earth with his own eyes open. At the same place
and time, person B (i. e. Bob) measures the same moon of our earth with his own eyes closed. Thus
far, if only human eyes which are open would justify the existence of our earth’s moon, person A
should not be able to measure anything, because according to the opinion of person B there cannot be
anything, his eyes are still closed. At the same point in space-time t both is given, the moon exists
(Person A) and the moon does not exist (Person B), which is a contradiction. At this point we must ask
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the fundamental question for what logically obligatory reason should we humans have to accept that
our earth’s moon exists only if we also look at the same.

“We often discussed his notions on objective reality. I recall that during one walk Einstein
suddenly stopped, turned to me and asked whether I really believed that the moon exists only

when I look at it. ”

(see Pais, 1979, p. 907)

Is our moon there when nobody looks?

Figure 3. Credit: NASA, International Space Station. Heavenly Half Moon. Picture
taken by a crew member aboard the International Space Station during Expedition 20.

The answer to the above question may cause headaches, sleepless nights and numerous other inconve-
niences for view authors. In the end, the answer was, is and remains that what it is: clear and simple.
Our earth’s moon is there where the same is, even if nobody looks. In other words, earth’s moon exists
independently of any measurement and independently and outside of any perceiving subject, objec-
tively and real. In general, the existence of a (quantum mechanical) object is a necessary condition
for the measurement of the (quantum mechanical) object. Without the existence of a (quantum me-
chanical) object no measurement of the (quantum mechanical) object. What are the epistemological
consequences of measuring something that does not exist?
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2.2.3. Basic definitions of theory of general relativity

Definition 2.10 (The Einstein field equations). The Einstein field equations (Einstein, 1915, 1916,
1917, 1935, Einstein and Sitter, 1932) describe the relationship between the presence of matter repre-

sented by the stress-energy tensor
((

4×2×π × γ

c4

)
×T µν

)
in a given region of space-time and the

curvature in that region by the equation

Rµν −
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

4×2×π × γ

c4

)
×T µν

≡ E ×gµν = Eµν

(31)

(Einstein, 1916, 1917)

where Rµν is the Ricci tensor (Ricci-Curbastro and Levi-Civita, 1900) of ‘Einstein’s general the-
ory of relativity’ (Einstein, 1916), R is the Ricci scalar, the trace of the Ricci curvature tensor with
respect to the metric and equally the simplest curvature invariant of a Riemannian manifold, Λ is the
Einstein’s cosmological (Barukčić, 2015a, Einstein, 1917) constant, Λ is the “anti cosmological con-
stant” (Barukčić, 2015a), gµν is the metric tensor of Einstein’s general theory of relativity, Gµν is
Einstein’s curvature tensor, Gµν is the “anti tensor” (Barukčić, 2016c) of Einstein’s curvature ten-
sor, Eµν is the stress-energy tensor of energy, Eµν is the tensor of non-energy, the anti-tensor of the
stress-energy tensor of energy, aµν , bµν , cµν and dµν denote the four basic fields of nature were aµν

is the stress-energy tensor of ordinary matter, bµν is the stress-energy tensor of the electromagnetic
field, c is the speed of the light in vacuum, γ is Newton’s gravitational “constant” (Barukčić, 2015a,b,
2016a,c), π is Archimedes constant pi.

Table 1 may provide a more detailed and preliminary overview of the definitions (Barukčić,
2016b,c) before.

Curvature
YES NO

Momentum YES aµν bµν ≡ (cµν + Λ× gµν )
8×π × γ ×T

c4 ×D
× gµν ≡

(
R
D
− R

2
+Λ

)
×gµν

NO cµν ≡ (bµν - Λ× gµν ) dµν ≡ (
R
2
× gµν - bµν )

(
R
2
−Λ

)
×gµν

Gµν ≡
(

R
D
− R

2

)
×gµν

R
2
× gµν Rµν ≡ R

D
×gµν

Table 1. Four basic fields of nature and Einstein’s field euqations.
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Definition 2.11 (Four basic fields of nature).

We define the four basic fields of nature (Barukčić, 2016b,c, 2020a,c,d, 2021b) as aµν , bµν , cµν ,
dµν . Exemplarily, covariant tensors are used. The four basic fields of nature can also be formulated as
mixed or as contra-variant tensors without any loss of information. In general, it is

aµν +bµν + cµν +dµν = Rµν (32)

or

bµν + cµν +dµν = Rµν −aµν (33)

Furthermore, it is (Barukčić, 2016b,c, 2020a,c,d, 2021b)

aµν +bµν ≡ 8×π × γ

c4 ×T µν

≡ Gµν +Λ×gµν

≡ 8×π × γ ×T
c4 ×D

×gµν

≡
(

R
D
− R

2
+Λ

)
×gµν

≡ E ×gµν

≡ Eµν

(34)

and

aµν + cµν ≡ Gµν

≡ Rµν −
R
2
×gµν

≡
(

R
D
− R

2

)
×gµν

(35)
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It was possible to provide evidence (Barukčić, 2016b,c, 2020a,c,d, 2021b) that

cµν +dµν ≡ Rµν −aµν −bµν

≡ Rµν −
8×π × γ ×T

c4 ×D
×gµν

≡
(

R
2
×gµν

)
−
(
Λ×gµν

)
≡
(

R
2
−Λ

)
×gµν

≡ E ×gµν

≡ Eµν

(36)

and that (Barukčić, 2016b,c, 2020a,c,d, 2021b)

bµν +dµν ≡ Eµν −aµν +
R
2
×gµν −Λ×gµν − cµν

≡ Eµν +
R
2
×gµν −Λ×gµν −aµν − cµν

≡ Eµν +
R
2
×gµν −Λ×gµν −Gµν

≡ R
2
×gµν +Eµν −Λ×gµν −Gµν

≡ R
2
×gµν

(37)

The table 2 will provide once again an overview of the general definition of the relationships between
these four basic (Barukčić, 2016b,c, 2021b) fields of nature under conditions of the general theory
of relativity where Rµν is the Ricci tensor, aµν is the stress-energy tensor of ordinary matter, bµν is

Curvature
YES NO

Momentum YES aµν bµν Eµν

NO cµν dµν Eµν

Gµν Gµν Rµν

Table 2. The four basic fields of nature

the stress-energy tensor of electromagnetic field, Gµν is Einstein’s curvature tensor, Gµν is the “anti
tensor” (Barukčić, 2016c) of Einstein’s curvature tensor, Eµν is the stress-energy tensor of energy,
Eµν is the tensor of non-energy, the anti-tensor of the stress-energy tensor of energy.
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3. Results

3.1. Energy, time and space

3.1.1. Theorem. Energy and space

Theorem 1 (The relationship between energy and space). The relationship between energy and space
is given as

+
E
S
+

E
S
=+1 (38)

Proof by direct proof. Axiom 1 or
+1 =+1 (39)

is true. Multiplying equation 39 by space +S, it is equally true that

+S =+S (40)

Equation 40 is equivalent with the relationship

+S+0 =+S+0 =+S (41)

In general, it is +E-E = 0. Equation 41 becomes

+E +S−E =+S (42)

Non-energy or anti-energy et cetera is defined (see equation 3, p. 10) as +E =+S−E, it is

+E +E =+S (43)

Normalising relationship between energy and non-energy, we obtain

+
E
S
+

E
S
=+1 (44)

□

Energy +E is one determining part of space but non-energy or anti-energy, denoted as +E, too. Only
under circumstances where non-energy +E = 0, space and energy where equivalent or even identical but
not in general. Today, we have not convincing evidence of the identity of energy and space. Therefore,
another of energy need to be given. Energy itself is given as

E = S×
(
+1− E

S

)
= S× (1− p(t)) = S× p(E) (45)

where E is the expectation value of energy and p(E) is the probability of energy E.
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3.1.2. Theorem. Time and space

Theorem 2 (The relationship between time and space). The relationship between time and space is
given as

+
t
S
+

t
S
=+1 (46)

Proof by direct proof. Axiom 1 or

+1 =+1 (47)

is true. Multiplying equation 47 by space +S, it is equally true that

+S =+S (48)

Equation 48 is equivalent with the relationship

+S+0 =+S+0 =+S (49)

In general, it is +t-t = 0. Equation 49 becomes

+t +S− t =+S (50)

Non-time or anti-time et cetera is defined (see equation 5, p. 10) as +t =+S− t, it is

+t + t =+S (51)

Normalising relationship between energy and non-energy, we obtain

+
t
S
+

t
S
=+1 (52)

□

Time +t is another determining part of space but non-time or anti-time, denoted as +t, too. Only
under circumstances where non-time +t = 0, space and time where equivalent or even identical but
not in general. Today, we have not convincing evidence of the identity of time and space. Therefore,
another of time need to be given. Time itself is determined as

t = S×
(
+1− t

S

)
= S× (1− p(E)) = S× p(t) (53)

where t is the expectation value of time and p(t) is the probability of time t.
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3.1.3. Theorem. There is no third between energy and time

Theorem 3 (Energy and time). There is no third between energy and time, tertium non datur, a third
(see Thomson, 1849, p. 295) is not given! It is

ln(RE)+ ln(Rt) = ln
(
σ (RS)2) (54)

Proof by direct proof. Axiom 1 or
+1 =+1 (55)

is true. Equation 55 changes slightly. It is equally√
1− v2

c2 =

√
1− v2

c2 (56)

According to equation 471, it is 0E t

RE
=

√
1− v2

c2 . Equation 56 changes to

0E t

RE
=

√
1− v2

c2 (57)

Equation 475 demands that 0t

Rt
=

√
1− v2

c2 . Based on this relationship, equation 57 changes to

0E

RE
=

0t

Rt
(58)

and to
0E ×Rt = 0t ×RE (59)

Furthermore, it is

0E × 0t√
1− v2

c2

= Rt ×

√
1− v2

c2 ×RE (60)

Equation 60 becomes
0E√
1− v2

c2

× 0t√
1− v2

c2

= Rt ×RE =
(

RZ2
)

(61)

while variable RZ is a provisional compromise. Under conditions where RE and Rt can be treated as
expectations values (see Barukčić, 2022), it is RS = RE +Rt and equally (RZ)2 = σ (RS)2 = RE ×Rt,
while σ (RS)2 is the variance (see Barukčić, 2022) of RS. We apply the logarithmus (see Nepervs,
1614) naturalis (ln) to equation 61. In point of fact, we have no other logical alternative than to
conclude in accordance with Einstein’s theory of special relativity the subsequent. It is logically (see
also figure 1, page 12) and mathematically irrefutable that

ln(RE)+ ln(Rt) = ln
(

RZ2
)
= ln

(
σ (RS)2

)
(62)

□
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In other words, based on Einstein’s theory of special (see Einstein, 1905b) relativity we were
able to provide a clear proof that there is no third between energy and time, time is the other of
energy, time is the opposite of energy and vice versa. Energy is the other of time, energy is the
opposite of time. However, it is equally an opposition which can destroy itself. Again, variable RZ is a
provisional compromise for those readers who do not agree with the term ln

(
σ (RS)2). Whether and

what relationship there is between RZ and Planck’s constant h can be investigated on another occasion.
Based on equation 62 there might be circumstances given under which equation 7 derived as

S = E + t (63)

is normalised as
E
S
+

t
S
= 1 (64)

With the help of the linear partial differential Schrödinger equation (see Born, 1926, Schrödinger,
Erwin Rudolf Josef Alexander, 1926) we get(

E ×H ×Ψ

S

)
+

(
t ×H ×Ψ

S

)
= H ×Ψ (65)

Another consequence of equation 7 derived as S = E + t is that

S = S−E +S− t (66)

Under these consequences we would have to accept (see equation 3 and equation 5) that

E + t =+S (67)

or that
E =+S− t =+t (68)

and that
t =+S−E =+E (69)

3.1.4. Theorem. Matter and gravitational field

The fundamental relationship between matter and the gravitational field has been defined by Ein-
stein as follows.

“Wir unterscheiden im folgenden zwischen ‘Gravitationsfeld’und ‘Materie’, in dem Sinne, daß
alles außer dem Gravitationsfeld als ‘Materie’bezeichnet wird, also nicht nur die ‘Materie’im

üblichen Sinne, sondern auch das elektromagnetische Feld. ”

(Einstein, 1916, p. 802/803)

Einstein’s position translated into English. ‘In the following we distinguish between ‘gravitational
field’and ‘matter’, in the sense that everything else but the gravitational field is termed as ‘matter’, i.e.
not only ‘matter’in the ordinary sense, but also the electromagnetic field. ‘
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Theorem 4 (Matter and gravitational field).

E = g× c2 (70)

Proof by direct proof. It is
1 = 1 (71)

or
U =U (72)

Rearranging equation 72, it is
U −M+M =U +0 (73)

or
g+M =U (74)

Normalising the relationship between matter and gravitational field, it is

g
U

+
M
U

=
U
U

=+1 (75)

Rearranging equation 75 it is
g× c2

U × c2 +
M× c2

U × c2 =+1 (76)

or
g× c2

S
+

M× c2

S
=+1 (77)

and
g× c2

S
+

E
S
=+1 (78)

or
g× c2

S
=+1− E

S
=

E
S

(79)

At the end, it is
g× c2 = E (80)

□

Remark 3.1. Objective reality is not only determined by energy, there is also something other than
energy, there is the complementary of energy, there is not energy or anti-energy. The other of energy,
denoted as E, the complementary of energy, the opposite of energy et cetera is identified for sure (see
equation 80) as

E = g× c2 (81)

However, which other meaning may we attribute to this relationship, can there be a more profound
meaning of E at all? In general, it is (see equation 3 and equation 4)

E +E = t + t = S (82)
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Energy is given by the equation
E = t + t −E = S−E (83)

We add time to energy. It is
E + t = t + t + t −E = S+ t −E (84)

Epistemologically it can not be denied that there can be circumstances where +t = E with the conse-
quence that +t −E = 0. Under these circumstances, we can conclude that

E + t = S+ t −E = S+0 = S (85)

We define energy in this way as all but time (ex negativo). In other words, there is no third between
energy and time, tertium non datur. At the end, it is

E + t = S (86)

There are conditions where it follows in a logically consistent way (see equation 68) that

t = E = g× c2 (87)

Fortunately, meanwhile we have presented a clear proof that equation 87 is generally valid. In fact,
under preliminary aspects we are inclined to consider that everything but time is energy. Thus far and
according to theorem 3, we have at least one justifiable reason to suppose that there is really no third
between energy and time.
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3.1.5. Theorem. Time and wave function

Theorem 5 (Time and wave function). Let REt denote the relativistic (total) energy of a system (viewed
from stationary observer R) at a certain run of an experiment t, let Rtt denote the relativistic time of a
system (viewed from stationary observer R) at a certain run of an experiment t. One distinct aspects of

the special theory of relativity is the relationship 0t t =

(
2

√
1− v2

c2

)
× Rt t. In general, it is

Rt t = Ψ (88)

Proof by direct proof. Axiom 1 or
+1 =+1 (89)

is true. In the continuation of this theorem we consider a quantum mechanical system. The total energy
of that system is identical with REt. We obtain

RE t = RE t (90)

Multiplying the energy of the quantum mechanical system (see equation 90) by Rtt, it is

RE t ×Rt t = RE t ×Rt t (91)

The quantum mechanical system mentioned previously (see equation 91) can be described without any
contradictions with the Schrödinger wave equation. We shall obtain t, it is

RE t ×Rt t = H ×Ψ (92)

where Ψ is the wave function and H is the Hamiltonian. The Hamiltonian of a quantum mechanical
system is an operator corresponding to the total energy of a quantum mechanical system, including
both kinetic energy and potential energy. We have very good reason to assume that REt equals H.
Equation 92 can be rearranged as

H ×Rt t = H ×Ψ (93)

Under the outlined circumstances (equation 93), we have very high level of evidence that the physical
meaning of the wave function is determined as

Rt t = Ψ (94)

□

In a more far reaching (see Barukčić, 2016d) publication on this matter, it should be possible to
provide a proof, that equation 94 is generally valid.2 In combination with equation 87, it is

Rt t = Ψ = g× c2 (95)

2Barukčić, I. (2016) The Physical Meaning of the Wave Function. Journal of Applied Mathematics and Physics, 4, 988-1023. doi:
10.4236/jamp.2016.46106.
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3.2. Theorem. The scalar form of the Ricci tensor Rµν

3.2.1. Theorem. The relationship between the scalar S and the dimension of space-time D

In general, the Ricci tensor Rµν represents how a volume of space in a curved space-time differs
from a volume of space in Euclidean space. Usually, the Ricci tensor Rµν is defined in terms of
mathematical objects called Christoffel symbols. The Christoffel symbols themselves are defined in
terms of the metric tensor gµν . At this location we would like to work out a proposal how to simplify
the form of the Ricci tensor.

Theorem 6 (The relationship between the entity S and the dimension of space-time D). In general, the
entity S is given by

S ≡
(

R
D

)
(96)

Proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(97)

is true, then the conclusion

S ≡
(

R
D

)
(98)

is also true, the absence of any technical errors presupposed. The premise

(+1) = (+1) (99)

is true. Multiplying this premise by the Ricci tensor it is

Rµν ≡ Rµν (100)

From where we stand, which is still unproven, the entity S (see equation 7) in combination with the
metric tensor gµν is able to describe the Ricci tensor Rµν mathematically in its entirety. The relation-
ship

Rµν ≡ S×gµν (101)

is valid without an exception and in general. Under these conditions, equation 101 becomes

Rµν ×gµν ≡ S×gµν ×gµν (102)

or in accordance with definition 5.40

R ≡ S×gµν ×gµν (103)
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In general, it is (see definition 5.9, equation 398)

R ≡ S×D (104)

Under circumstances outlined before, entity S is depending on the number of space-time dimensions
D and follows as

S ≡
(

R
D

)
(105)

□

Our assumption (see equation 101, page 28) presented as Rµν ≡ S×gµν would be true in the case that

Rµν ≡
(

R
D

)
×gµν . However, the last relationship has to be proven and cannot be simply hypothesised.

Under conditions of D=1 space-time dimension, it would have to be taken as given that

R ≡ S×D ≡ S×1 ≡ S (106)

3.2.2. Theorem. The relationship between variable X and the Ricci scalar R

Theorem 7 (The relationship between variable X and the Ricci scalar R). In general, it is

X =

(
R
D

)
(107)

Proof by direct proof. Axiom 1 or +1=+1 is true and therefore

Rµν ≡ Rµν (108)

In our understanding, there is a relationship between the variable X and the Ricci tensor Rµν given by
the equation

Rµν = X ×gµν (109)

while the value of X is unknown at this moment. Rearranging equation 109 it is

Rµν ×gµν = X ×gµν ×gµν (110)

or
R = X ×D (111)

and

X =
R
D

(112)

□
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3.2.3. Theorem. The scalar form of Ricci tensor Rµν

Theorem 8 (The scalar form of Ricci tensor Rµν ). The general scalar form of Ricci tensor Rµν is
given as

Rµν =

(
R
D

)
×gµν (113)

Proof by direct proof. It is (see equation 112, p. 29)

X ≡
(

R
D

)
(114)

We multiply equation 114 by the metric tensor gµν . It is

X ×gµν ≡
(

R
D

)
×gµν (115)

Equation 115 (see equation 112, page 29) is an equivalent formulation of the Ricci tensor Rµν in terms
of a Scalar X and given by the equation

Rµν = X ×gµν ≡
(

R
D

)
×gµν (116)

□
3.2.4. Theorem. The relationship between the entity S and the Ricci scalar R

Theorem 9 (The relationship between the entity S and the Ricci scalar R). In general, it is

X = S (117)

Proof by direct proof. In general, axiom 1 or +1=+1 is true. Therefore, it is

X = X (118)

Equation 118 (see equation 112, p. 29) becomes

X ≡
(

R
D

)
(119)

The type of relationship hypothesised by equation 105 (see equation 105, p. 29) is given for sure as

S ≡
(

R
D

)
(120)

□Based on equation 120, it is considered proved that Ricci tensor Rµν is given by the equation

Rµν = S×gµν ≡
(

R
D

)
×gµν (121)
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3.2.5. Theorem. Einstein manifolds and scalar S

At this point the question is legitimate, if we really proved the relation of equation 101 or rather
only defined the same? Because a lot depends on the validity of equation 101, we want to deal with
this topic from a different point of view.

Theorem 10 (The scalar S). The scalar S is determined and not defined as

S =
R
D

(122)

Proof by direct proof. Axiom 1 or +1=+1 is valid and therefore

Rµν = Rµν (123)

In general and from our point of view, it has to be that

Rµν = S×Y ×gµν (124)

while S is a scalar as defined by equation 7 (see equation 7, p. 11) and Y is not known at this stage of
the proof. As next, equation 124 becomes

Rµν ×gµν = S×Y ×gµν ×gµν (125)

Thus far, it is equally
R︸︷︷︸

Le f t:scalar

= S×D×Y︸        ︷︷        ︸
Right:scalar

(126)

or Y itself is a scalar given as

Y =
R

S×D
(127)

In general, the Ricci tensor Rµν is determined as

Rµν = S×
(

R
S×D

)
×gµν =

(
R
D

)
×gµν (128)

At this point we must refer to the previous evidence provided that Y =
R

S×D
= 1 . Under these

circumstances (D is the number of space-time dimensions), it is again

S =
R
D

(129)

□

As generally known, in mathematical physics and differential geometry, an Einstein manifold is a
differentiable manifold whose Ricci tensor Rµν is at the end proportional to the metric tensor gµν . In
contrast to equation 116, an Einstein manifold (see Besse, 1987, Kasner, 1920) is defined in general
such that Rµν = κ ×gµν , while κ is a proportionality factor. A number of monographs appeared under
the “name”Arthur L. Besse which is a nom de plume of a group of French differential geometers, led
by Marcel Berger (1927 – 2016).
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3.3. The geometrical structure of the stress-energy tensor of matter

Gravity and space-time geometry are related. In the Einstein field equations, it is the stress-energy
tensor of matter Tµν , introduced by Max von Laue (1879-1960) in the year 1911 (see Laue, 1911,
p. 528) as ‘Welttensor’, which is the source of gravitation. Unfortunately, the stress-energy tensor of
matter Tµν is still “... a field devoid of any geometrical significance” (see Goenner, 2004, p. 7). A
possible way out of this persistent difficulty might be a detour via a scalar.

3.3.1. Theorem. The scalar E of the stress-energy tensor of matter

General relativity’s approach to gravitation is based on a more or less complicated geometry of
space and time while doing away with forces. However, the unity of nature as the very foundation of
the unity of science should enable us to find a different but equivalent approach to this subject too.

Theorem 11 (The scalar E of the stress energy tensor of matter ). The scalar E of the stress energy
tensor of matter Tµν is given as

E =

(
4×2×π × γ ×T

c4 ×D

)
(130)

Proof by direct proof. Axiom 1 or
+1 =+1 (131)

is true. Therefore, it is equally true that(
4×2×π × γ

c4

)
×T µν =

(
4×2×π × γ

c4

)
×T µν (132)

From our standpoint, it should be theoretically possible to geometrize this tensor in its entirety. This
tensor should be fully expressed by an unknown scalar E and the metric tensor gµν . Equation (see
equation 132) changes slightly for this reason. It is(

4×2×π × γ

c4

)
×T µν = E ×gµν (133)

The trace of a tensor has several properties. The reader may kindly appreciate that we cannot go into
any further detail on this matter at this point. Taking the trace of equation (see equation 133), we obtain(

4×2×π × γ

c4

)
×T µν ×gµν = E ×gµν ×gµν (134)

According to equation 398 it is gµν ×gµν ≡ δ ν
ν ≡ D. Equation 134 changes slightly. It is(

4×2×π × γ

c4

)
×T = E ×D (135)
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Moving away step by step from the known to the unknown, we have been able to shed some more light
on the epistemological darkness which is surrounding us. The unknown scalar E has been identified in
a logically and mathematical consistent way as

E =

(
4×2×π × γ ×T

c4 ×D

)
(136)

□

3.3.2. Theorem. The scalar form of the stress-energy tensor of matter

Theorem 12. (
8×π × γ

c4

)
×T µν =

(
4×2×π × γ ×T

c4 ×D

)
×gµν (137)

Proof by direct proof. Axiom 1 or
+1 =+1 (138)

is true. Therefore, it is equally true that (see equation 133)(
4×2×π × γ

c4

)
×T µν = E ×gµν (139)

The scalar E (see equation 136) has been identified as E =

(
4×2×π × γ ×T

c4 ×D

)
. The geometrized,

generally covariant scalar form of the stress-energy tensor of matter is given as(
4×2×π × γ

c4

)
×T µν =

(
4×2×π × γ ×T

c4 ×D

)
×gµν (140)

□
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3.3.3. Theorem. Quantisation of the stress energy tensor of matter

The mathematical representation of matter might oscillate back and forth between relativity theory
and quantum theory. In fact, the unity of nature should, nonetheless, provide us with the ability to
bridge the ever-increasing gap between quantum theory and (classical) field theory. We give ourselves
over to the silent hope to derive quantum theory or the quantisation of gravity as a consequence of
unified field theory.

Theorem 13 (Quantisation of the stress energy tensor of matter). The stress energy tensor of matter
can be quantised as (

8×π × γ

c4

)
×T µν = h×

(
4× γ ×T
ℏ× c4 ×D

)
×gµν (141)

Proof by direct proof. Axiom 1 or
+1 =+1 (142)

is true. is true. Therefore, it is equally true (see equation 140) that(
4×2×π × γ

c4

)
×T µν =

(
4×2×π × γ ×T

c4 ×D

)
×gµν (143)

We know that Dirac’s/Schrödinger’s (see also Dirac, 1926, Dirac and Fowler, 1926, Schrödinger, Erwin
Rudolf Josef Alexander, 1926) constant ℏ is determined as

ℏ≡ h
2×π

(144)

In other words, it is

2×π ≡ h
ℏ

(145)

This relationship is substituted into equation 143. The quantised form of the stress-energy tensor of
matter is given as (

4×2×π × γ

c4

)
×T µν = h×

(
4× γ ×T
ℏ× c4 ×D

)
×gµν (146)

□

At least one methodological weak point in the process of the establishment of quantisation of the
Einstein field equations for unified field theory was the missing link between geometrization of the
stress tensor of the matter and its relationship to quantum theory. We have some reason to believe that
this methodological weakness can be considered overcome with equation 146. This approach would
receive a certain positive boost if theoretical or experimental proof were to be obtained that frequency
f is determined as

f =
(

4× γ ×T
ℏ× c4 ×D

)
(147)

Such a proof would open up massive theoretical and experimental possibilities.
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3.4. The geometrical structure of the four basic fields of nature

3.4.1. The scalar theories of gravitation

The history of the scalar theories of gravitation (Goenner, 2012) is characterised by a lot of ups
(Bragança and Lemos, 2018) and downs. In one of the frist trials, Gunnar Nordström (1881–1923), a
Finnish theoretical physicist, in his attempt to construct a consistent, relativistic theory of gravitation
treated the gravitational potential as a scalar field on a Minkowski background (Nordström, 1912).
Quickly, Nordström modified his first scalar theory of gravitation into a predecessor of general rela-
tivity, a scalar theory of gravitation with conformal background (Nordström, 1913a). Nordström’s
relativistic scalar theory of gravitation immediately inspired Einstein who in the same year 1913 re-
formulated Nordström’s theory in an elegant way and presented his own relativistic scalar theory of
gravitation (Einstein, 1913). In the following, Einstein and Fokker (Einstein and Fokker, 1914) re-
analysed Nordström’s modified scalar gravitational theory and demonstrated that the same theory is a
covariant scalar theory in a conformally flat space-time. However, neither Einstein nor other authors
did answer the fundamental question of whether the Einstein field equations can fully be expressed in
terms of scalars too. Einstein is writing with regard to a similar topic the following.

“Bei der unleugbaren Kompliziertheit der hier vertretenen Theorie der Gravitation müssen wir uns
ernstlich fragen, ob nicht die bisher ausschließlich vertretene Auffassung, nach welcher das

Gravitationsfeld auf einen Skalar Φ zurückgeführt wird, die einzig nahe liegende und berechtigte
sei. Ich will kurz darlegen, warum wir diese Frage verneinen zu müssen glauben. ”

(see Einstein and Grossmann, 1913, p. 20 )

Einstein is writing: ‘In view of the undeniable complexity of the theory of gravitation presented
here, we must seriously ask ourselves whether the hitherto exclusively advocated view, according to
which the gravitational field is traced back to a scalar Φ, is not the only obvious and justified one. I
want to explain briefly why we believe to have to deny this question.’Can we reduce the gravitational
field to a scalar? Einstein believed he could answer the issue of a scalar theory of gravitation or of a
scalar-tensor theory of gravitation decisively in the negative and thereby ruling out not just Nordström’s
theory of gravitation but any competitor of general relativity which represented the gravitation with the
help of scalars. However and with all the conceptual adversities to which we may be exposed, it
would be more than appropriate to distinguish very precisely between a scalar theory of gravitation
and a scalar-tensor theory of gravitation. In everything we do, we should keep in mind that a scalar-
tensor (Brans and Dicke, 1961) theory of gravitation should not be mismatched with or reduced to
a scalar (Nordström, 1912, 1913a) theory of gravitation. Today, several theories of gravitation are
based on supergravity or superstrings and do contain one or more scalar fields and are trying to modify
to some extent the original Einstein tensor theory of gravitation. The following lines are mostly to
be understood as something like new scalar-theory of gravitation based on very slight modifications of
Einstein tensor theory of gravitation and not as a refutation of Einstein tensor theory of gravitation. The
approach to this matter differs essentially from Jordan–Brans–Dicke scalar-tensor theory of gravitation
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(see Brans and Dicke, 1961, Jordan, 1952). In fact, scalar-tensor theories of gravitation as one of the
most popular competitors (see Yasunori and Kei-ichi, 2003) to Einstein’s theory of gravitation are
again and again considered as a serious alternative to Einstein’s theory of gravity. Such an stance is not
really factually justified. Today, one will assume for nothing that the inevitable time will come when
Einstein’s general theory of relativity is to be regarded as erroneous.
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Time and again, we were able to identify the four fundamental fields of nature (Barukčić, 2016b,c,
2020b,c,d,d, 2021b) as aµν , bµν , cµν , dµν . At this point, we would like to visualize these matters
once again in our mind’s eye (see table 3, p. 37).

Curvature

YES NO

Momentum YES aµν bµν Eµν

NO cµν dµν Eµν

Gµν Gµν Rµν

Table 3. Einstein field equations and the four basic fields of nature

As previously outlined elsewhere, an equivalent formulation of the four basic fields of nature aµν ,
bµν , cµν , dµν in terms of the Ricci tensor Rµν is given by the equation

aµν +bµν + cµν +dµν = Rµν (148)

Nonetheless, even if the aforementioned is logically very plausible, the concrete structure and a
detailed geometrical description of the four fundamental fields of nature remains quite doubtful in
spite of many attempts of geometrization (Barukčić, 2016b,c, 2020b,c,d,d, 2021b) of the same. At
this stage we would like to approach this issue from a different viewpoint in order to possibly get closer
to the solution of this problem. In this context, Einstein’s field equations (see equation 496) completely
geometrized (see Barukčić, 2020a,d) with respect to space-time dimension D are given as((

R
D

)
×gµν

)
−
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

4×2×π × γ ×T
c4 ×D

)
×gµν (149)

or as((
R
D

)
×gµν

)
−
(
(R)×gµν

)
+

((
R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

4×2×π × γ ×T
c4 ×D

)
×gµν (150)

and equally as

((
R
D

)
×gµν kl ...

)
−
(
(R)×gµν kl ...

)
+

((
R
2

)
×gµν kl ...

)
+
(
Λ×gµν kl ...

)
≡
(

4×2×π × γ ×T
c4 ×D

)
×gµν kl ... (151)
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3.4.2. Theorem. The geometrical structure of the fields of nature aµν + bµν

Theorem 14 (The geometrical structure of the fields of nature aµν + bµν ). The geometrical structure
of the basic field of nature aµν + bµν is given as

aµν +bµν = Rµν −
(
R×gµν

)
+

(
R
2
×gµν

)
+
(
Λ×gµν

)
(152)

Proof by direct proof. Axiom 1 or +1=+1 is valid and therefore

Rµν = Rµν (153)

too. The Ricci tensor Rµν is determined by the four basic fields of nature aµν , bµν , cµν , dµν as

aµν +bµν + cµν +dµν = Rµν (154)

Rearranging equation , it is

aµν +bµν ≡ Rµν − cµν −dµν

≡
(

4×2×π × γ

c4

)
×T µν

≡ Rµν −
(

R
2
×gµν

)
+
(
Λ×gµν

) (155)

Rearranging equation 155, it is

aµν +bµν +0 ≡ Rµν −
(

R
2
×gµν

)
+0+

(
Λ×gµν

)
(156)

or

aµν +bµν ≡ Rµν −
(

R
2
×gµν

)
−
(

R
2
×gµν

)
+

(
R
2
×gµν

)
︸                                  ︷︷                                  ︸

+ 0

+
(
Λ×gµν

)
(157)

Another equivalent geometrical formulation of the tensors aµν +bµν is given as

aµν +bµν ≡ Rµν −
(
R×gµν

)
+

(
R
2
×gµν

)
+
(
Λ×gµν

)
≡
(

4×2×π × γ

c4

)
×T µν (158)

□

Based on this new discovery we are now in the position to present the Einstein’s field equations, a ten
component tensor equation which relates local space-time curvature with local energy and momentum,
in a new manner as(

R
D
×gµν

)
−
(
R×gµν

)
︸                             ︷︷                             ︸

Ordinary matter aµν

+

(
R
2
×gµν

)
+
(
Λ×gµν

)
︸                             ︷︷                             ︸

Electromagnetic field bµν

≡
(

4×2×π × γ

c4

)
×T µν (159)
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3.4.3. Theorem. The geometrical structure of the fields of nature cµν + dµν

Theorem 15 (The geometrical structure of the fields of nature cµν + dµν ). The geometrical structure
of the basic field of nature cµν + dµν is given as

cµν +dµν =

(
R
2
×gµν

)
−
(
Λ×gµν

)
(160)

Proof by direct proof. Axiom 1 or +1=+1 is valid and therefore Rµν = Rµν too. The Ricci tensor Rµν

is determined by the four basic fields of nature aµν , bµν , cµν , dµν as

aµν +bµν + cµν +dµν = Rµν (161)

Rearranging equation , it is

cµν +dµν ≡ Rµν −aµν −bµν

≡ Rµν −
(

4×2×π × γ ×T
c4

)
×gµν

≡ Rµν −
(
Gµν +

(
Λ×gµν

)) (162)

Rearranging equation 162, it is

cµν +dµν ≡ Rµν −
(
Gµν +

(
Λ×gµν

))
≡ Rµν −

(
Rµν −

(
R
2
×gµν

)
+
(
Λ×gµν

))
≡
(

R
2
×gµν

)
−
(
Λ×gµν

) (163)

The fundamental geometrical formulation of the fields of nature cµν +dµν is given for sure as

cµν +dµν ≡
(

R
2
−Λ

)
×gµν (164)

□

Remark 3.2. Interestingly, the tensors cµν + dµν do not depend on the space-time dimension D.
Nonetheless, the question arises immediately whether there are conditions under which it is conceiv-
able that the relationship

cµν +dµν =

(
R
2
−Λ

)
×gµν = 0 (165)

is given. Equation 165 simplifies at the end as

R = 2×Λ = Λ+Λ (166)

or as
R−Λ = Λ (167)
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According to Barukčić (Barukčić, 2013) it 3 , 4 , 5 is Λ = R−Λ. Under the assumed circumstances,
the relationship

Λ = Λ (168)

applies, where Λ denotes the other of Λ or anti-lambda. Objective reality determined by the vanishing
of the fields cµν + dµν = 0 is an objective reality where Λ is equal to Λ, its own other, its own opposite
and vice versa.

3.4.4. Theorem. The geometrical structure of the fields of nature aµν + cµν

In general, Einstein’s tensor Gµν is defined as

Gµν = Rµν −
(

R
2
×gµν

)
(169)

However, we have to face helplessly the fact that the detailed structure of what determines the Einstein
tensor in dependence of the 4 fundamental fields of nature is at present unknown to us. Nevertheless,
despite all methodological intellectual darkness, we know the following (see table 4, p. 40).

Curvature

YES NO

Momentum YES aµν bµν Eµν

NO cµν dµν Eµν

unknownµν Gµν Rµν

Table 4. Einstein tensor Gµν and the four basic fields of nature

Theorem 16 (The determination of Einstein’s tensor Gµν ). There is a tensor xµν which is still unknown
in detail and which is an intrinsic part of the tensor Gµν . Einstein’s tensor Gµν is determined in detail
as

Gµν = aµν + xµν (170)

Proof by direct proof. Axiom 1 or +1=+1 is valid and therefore

Gµν = Gµν (171)

3Ilija Barukčić, ”The Relativistic Wave Equation,” International Journal of Applied Physics and Mathematics vol. 3, no. 6, pp.
387-391, 2013.

4ibid.
5ibid.
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Rearranging equation 169, it is
Gµν −aµν +aµν = Gµν (172)

It is
Gµν −aµν = xµν (173)

In general, Einstein’s tensor Gµν is determined by the tensor aµν and an unknown tensor xµν as

aµν + xµν = Gµν (174)

□

Theorem 17 (The determination of the tensor xµν ). The tensor xµν is determined as

xµν = cµν (175)

Proof by direct proof. Axiom 1 or +1=+1 is valid and therefore((
R
2

)
×gµν

)
−
(
Λ×gµν

)
=

((
R
2

)
×gµν

)
−
(
Λ×gµν

)
(176)

too. In our understanding, this field is determined by the same unknown tensor xµν as is the Einstein
tensor Gµν . From our point of view, the following relationship(

xµν

)
+
(
dµν

)
=

((
R
2

)
×gµν

)
−
(
Λ×gµν

)
(177)

applies until further notice. As next, equation 177 changes slightly (see equation 164, p. 39). It is
equally valid that (

xµν

)
+
(
dµν

)
=
(
cµν

)
+
(
dµν

)
(178)

Under the conditions mentioned in the previous passage, we can determine the unknown tensor xµν as

xµν = cµν (179)
□

Theorem 18 (The field of nature aµν + cµν ). The relationship between the Einstein’s tensor Gµν and
the basic fields of nature is determined by the relation

Gµν = aµν + cµν (180)

Proof by direct proof. Axiom 1 or +1=+1 is valid and therefore

Gµν = Gµν (181)

too. As found before (see equation 170, p. 40), it is equally

Gµν = aµν + xµν (182)

In the meantime, we have been able to determine the exact structure of the unknown tensor xµν . It is
xµν = cµν (see equation 179, p. 41). Equation 182 changes because of this insight. The basic fields of
nature aµν and cµν are determining the Einstein tensor in detail as

Gµν = aµν + cµν (183)
□
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3.4.4.1. Theorem. The field of nature aµν + cµν

Theorem 19 (The field of nature aµν + cµν ). Einstein’s tensor is determined as

aµν + cµν = Gµν (184)

Proof by direct proof. Axiom 1 or
+1 =+1 (185)

is true. Therefore, it is equally true that

aµν + cµν ≡ leerzeichenaµν leerzeichenzeichen+ leerzeichencµν

≡
((

4×2×π × γ

c4

)
×T µν −bµν

)
+

((
R
2

)
×gµν −Λ×gµν −dµν

)
≡
(
Gµν +Λ×gµν −bµν

)
leerzeiche+

((
R
2

)
×gµν −Λ×gµν −dµν

)
≡ Gµν +

R
2
×gµν −bµν −dµν︸                        ︷︷                        ︸

=+0

≡ Gµν

(186)

□

In this respect, the question arises whether the tensors Gµν and
R
2
× gµν −Λ× gµν do posses a

common tensor xµν at all? Didn’t we just make all this up and defined it? We know that Gµν +
Λ× gµν = aµν + xµν +Λ× gµν = aµν + bµν . In other words it is xµν +Λ× gµν = bµν or −Λ×

gµν = xµν − bµν . Substituting this relationship into the tensor and
R
2
× gµν − Λ × gµν it is and

R
2
× gµν −Λ× gµν =

R
2
× gµν + xµν − bµν . Therefore, our assumption is justified that the tensors

Gµν and
R
2
×gµν −Λ×gµν do posses a common tensor xµν together. The proof provided is logically

sound. The table 5 (see table 5, p. 42) should be able now to provide us with the recognised details in
a logically consistent way.

Curvature

YES NO

Momentum YES aµν bµν Eµν

NO cµν dµν Eµν

Gµν Gµν Rµν

Table 5. Einstein tensor Gµν and the four basic fields of nature
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3.4.5. Theorem. The geometrical structure of the fields of nature bµν + dµν

Theorem 20 (The geometrical structure of the fields of nature bµν + dµν ). The field
(

R
2

)
× gµν is

determined by the basic field of nature as(
R
2

)
×gµν =

(
bµν

)
+
(
dµν

)
(187)

Proof by direct proof. Axiom 1 or +1=+1 is valid and therefore (see equation 180, p. 41)

bµν +dµν ≡ bµν +dµν +aµν + cµν −aµν − cµν

≡ aµν +bµν + cµν +dµν −aµν − cµν

≡
(
aµν +bµν + cµν +dµν

)
−
(
aµν + cµν

)
≡ Rµν −Gµν

≡ Rµν −Rµν +

((
R
2

)
×gµν

)
≡
(

R
2

)
×gµν

(188)

□

A very attentive reader may note in this context that it will not always correspond to the truth, if
it is just defined how objective reality has to be. In point of fact, the fundamental question arises
indeed, is it allowed at all to decompose the Ricci tensor Rµν into the four basic four fields of nature as
aµν +bµν +cµν +dµν = Rµν . Nonetheless, if this question is allowed to be answered with a clear yes,
and if the Einstein’s field equations are true, then what is presented in this publication follows with an
undeniable and pure logical necessity.
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3.5. The basic field of nature cµν

3.5.1. Theorem. The geometrical structure of the basic field of nature cµν

Theorem 21 (The geometrical structure of the basic field of nature cµν ). The geometrical structure of
the basic field of nature cµν is given as

cµν =

(
R
2

)
×gµν (189)

Proof by direct proof. Einstein’s tensor Gµν (Barukčić, 2016b,c, 2020b,c,d,d, 2021b) has been de-
rived (but not defined) as

Gµν = aµν + cµν = Rµν −
(

R
2

)
×gµν =

(
R
D
− R

2

)
×gµν (190)

The validity of this tensor equation remains even under conditions under which the stress-energy tensor
of the ordinary matter disappears or aµν = 0. Under these conditions, it is

cµν = Gµν −aµν = Gµν −0 = Gµν = Rµν −
(

R
2

)
×gµν =

(
R
D
− R

2

)
×gµν (191)

This tonsorial equation is true in all coordinate systems. Similarly, under the conditions of 1 space-time
dimension, we must take the validity of this tensor equation as given. Under these conditions follows
that

cµν =

(
R
1
− R

2

)
×gµν =

(
R
2

)
×gµν (192)

The geometrical form of the fundamental field of nature cµν is given as

cµν =

(
R
2

)
×gµν (193)

□

Remark 3.3. The field cµν is determined as cµν =

(
R
2

)
×gµν . However, this insight results in a few

consequences. Both tensors, aµν and cµν , are contributing to Einstein’s tensor Gµν . However, this
does not exclude that the field cµν exists and can exist even if the field aµν disappears or no longer
exists. We have to keep in mind that the Einstein field equations allow and describe an objective reality
even in one dimension as((

R
2

)
×gµν

)
+
(
Λ×gµν

)
=

(
4×2×π × γ ×T

c4

)
×gµν (194)

This excludes the existence of the stress-energy tensor of the ordinary matter aµν in one dimension.
Nevertheless, the existence of the stress-energy tensor of the electromagnetic field bµν in one dimension
is not excluded. The following picture might illustrate equation 194 in more detail.
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((
R
2

)
×gµν

)
(
(Λ)×gµν

)

(
4×2×π × γ ×T

c4

)
×gµν
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3.6. The basic field of nature aµν

3.6.1. Theorem. The geometrical structure of the basic field of nature aµν

Theorem 22 (The geometrical structure of the basic field of nature aµν ). The geometrical structure of
the basic field of nature aµν (stress-energy tensor of ordinary matter) is given as

aµν =

(
R
D
×gµν

)
−
(
R×gµν

)
(195)

Proof by direct proof. Einstein’s tensor Gµν (Barukčić, 2016b,c, 2020b,c,d,d, 2021b) has been de-
rived (but not defined) as

Gµν = aµν + cµν =

(
R
D
− R

2

)
×gµν (196)

The stress-energy tensor of the ordinary matter, denoted as aµν , is given as

aµν =

((
R
D
− R

2

)
×gµν

)
− cµν (197)

The tensor cµν has been determined as cµν =

(
R
2

)
× gµν (see equation 192, p. 44). Equation 197

becomes

aµν =

(
R
D
×gµν

)
−
(

R
2
×gµν

)
−
(

R
2
×gµν

)
(198)

The geometrical form of the stress-energy tensor of the ordinary matter, denoted as aµν , is given as

aµν =

(
R
D
×gµν

)
−
(
R×gµν

)
(199)

□

Remark 3.4. An objective reality under conditions of D=1 space-time dimension seems to be possible
purely theoretically. Under these conditions the tensor of the ordinary matter aµν vanishes or it is

aµν =

(
R
D
×gµν

)
−
(
R×gµν

)
=

(
R
1
×gµν

)
−
(
R×gµν

)
=
(
R×gµν

)
−
(
R×gµν

)
= 0 (200)

and with it also the possibility of any kind of locality. In this respect it seems to be necessary to
point out that objective reality under conditions of D=1 space-time dimension is purely non-local.
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3.6.2. Theorem. The geometrical structure of the basic field of nature aµν

Theorem 23 (The geometrical structure of the basic field of nature aµν . The geometrical structure of
the basic field of nature aµν is given as

aµν =
(
Rµν

)
−
(
R×gµν

)
(201)

Proof by direct proof. Axiom 1 or
+1 =+1 (202)

is true. Therefore, it is equally true that(
4×2×π × γ

c4

)
×T µν =

(
4×2×π × γ

c4

)
×T µν (203)

Einstein field equations becomes

(
Gµν

)
+
(
Λ×gµν

)
=
(
Rµν

)
−
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
=

(
4×2×π × γ

c4

)
×T µν (204)

As outlined before, it is Gµν = aµν + xµν (see equation 170). Equation 204 becomes

aµν + xµν︸        ︷︷        ︸
Einstein tensor

+
(
Λ×gµν

)
=

(
4×2×π × γ

c4

)
×T µν =

(
Rµν

)
−
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
(205)

The stress-energy of ordinary matter, aµν , is given as

aµν =

(
4×2×π × γ

c4

)
×T µν − xµν −

(
Λ×gµν

)
=
(
Rµν

)
−
((

R
2

)
×gµν

)
− xµν −

(
Λ×gµν

)
+
(
Λ×gµν

)
(206)

or more simplified as

aµν =
(
Rµν

)
−
((

R
2

)
×gµν

)
− xµν −

(
Λ×gµν

)
+
(
Λ×gµν

)︸                              ︷︷                              ︸
+0

(207)

The unknown tensor xµν has been identified (see equation 179 and equation 193) as xµν = cµν =(
R
2

)
×gµν . Equation 207 becomes

aµν =
(
Rµν

)
−
((

R
2

)
×gµν

)
−
((

R
2

)
×gµν

)
+0 =

(
Rµν

)
−
(
R×gµν

)
(208)

□

The weak interaction and the electromagnetic interaction were unified by the
Glashow–Weinberg–Salam model into electroweak (see Glashow, 1959, Salam and Ward,
1959, Weinberg, 1967) interaction. The electromagnetic, weak, and strong forces (see Georgi and
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Glashow, 1974) are meanwhile merged into a single force. However, it is necessary to consider
whether the weak force and the strong force can be merged into a single force of ordinary matter
denoted by something related on

Ordinary matter = Strong force+Weak force = aµν =
(
Rµν

)
−
(
R×gµν

)
(209)

Under conditions where the stress energy tensor or ordinary matter vanishes or where aµν = 0, it is(
Rµν

)
=
(
R×gµν

)
(210)

Under these circumstances, the only term in the stress–energy tensor is the stress energy tensor of
electromagnetism bµν . We obtain((

R
2

)
×gµν

)
+
(
Λ×gµν

)
=

(
4×2×π × γ ×T

c4 × (D = 1)

)
×gµν =

(
4×2×π × γ

c4

)
×T µν (211)

These conditions are given especially under conditions of D = 1 space time dimension. Provided that
the proof of the existence of strings in a space-time dimension D = 1 would succeed, the wave equation
(see equation 211) should be able to describe those strings completely. Normalising equation 211 it is(

R
2

)
(

4×2×π × γ ×T
c4 × (D = 1)

) +
(Λ)(

4×2×π × γ ×T
c4 × (D = 1)

) =+1 (212)

Multiplying equation 212 by the Schrödinger equation (see Schrödinger, Erwin Rudolf Josef Alexan-
der, 1926), it is (

R
2

)
× (H ×Ψ)(

4×2×π × γ ×T
c4 × (D = 1)

) +
(Λ)× (H ×Ψ)(

4×2×π × γ ×T
c4 × (D = 1)

) = (H ×Ψ) (213)

where H is the Hamiltonian of a system, an operator corresponding to the total energy of a system.

Under circumstances where H = ek×
(

4×2×π × γ ×T
c4 × (D = 1)

)
(assuming ek = 1) equation 213 simplifies

as (
R
2
×Ψ

)
+(Λ×Ψ) = H ×Ψ (214)

It is ℏ =
h

2×π
and h = 2× π × ℏ In quantum mechanics, the canonical commutation relation is a

fundamental relation which justifies the equation [x, p] = i× ℏ× I and ℏ =
[x, p]
i× I

. It is
1
2
=

π ×ℏ
h

=

π × [x, p]
i× I

h
. Equation 214 becomes(

π × [x, p]
i×h× I

×R×Ψ

)
+(Λ×Ψ) = H ×Ψ (215)
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3.7. The basic field of nature dµν

3.7.1. Theorem. The geometrical structure of the basic field of nature dµν

Theorem 24 (The geometrical structure of the basic field of nature dµν ). The geometrical structure of
the basic field of nature dµν is given as

dµν =−
(
Λ×gµν

)
(216)

Proof by direct proof. Axiom 1 or +1=+1 is valid and therefore Rµν = Rµν too. The Ricci tensor Rµν

is determined by the four basic fields of nature aµν , bµν , cµν , dµν as

aµν +bµν + cµν +dµν = Rµν (217)

Rearranging equation , it is

cµν +dµν ≡ Rµν −aµν −bµν

≡ Rµν −
(

4×2×π × γ

c4

)
×T µν

(218)

It follows (Barukčić, 2016b,c, 2020b,c,d,d, 2021b) (and is not defined) that

cµν +dµν =

(
R
2
×gµν

)
−
(
Λ×gµν

)
(219)

The tensor cµν has been determined as cµν =

(
R
2

)
× gµν (see equation 192, p. 44). Equation 219

becomes (
R
2
×gµν

)
+dµν =−

(
Λ×gµν

)
+

(
R
2
×gµν

)
(220)

or

dµν =−
(
Λ×gµν

)
+

(
R
2
×gµν

)
−
(

R
2
×gµν

)
(221)

The geometrical structure of the basic field of nature dµν is given as

dµν =−
(
Λ×gµν

)
(222)

□

As of today, the importance and the properties of gravitational waves (see Abbott et al., 2016,
Einstein, 1918a, Heaviside, 1898) cannot be overemphasized. However, at present there are rather
diverging results on the issue of the relevance of the cosmological constant Λ on gravitational waves
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(see Bičák, Jiřı and Podolskỳ, Jiřı , 1999, Näf et al., 2009) in general relativity. Do gravitational waves
exist even under conditions of objective reality where the stress energy tensor of ordinary matter aµν

is equal to aµν = 0? We point out that one can not rule out the possibility that under these assumptions
gravitational waves will be localised inside field dµν or will even be identical with field dµν . As known,
the space-time of special relativity is flat while the space-time of general relativity is curved. Equation
222 can be decomposed as

dµν =−
(
Λ×gµν

)
=−

(
Λ×ηµν

)
−
(
Λ×ηµν

)
(223)

where ηµν is the metric tensor of special relativity while ηµν might describe disturbances or ripples
in the curvature of space-time.

3.7.2. Theorem. The geometrical structure of the basic field of nature dµν

Theorem 25 (The geometrical structure of the basic field of nature dµν ). The geometrical structure of
the basic field of nature dµν is given as

dµν =−
(
Λ×gµν

)
(224)

Proof by direct proof. Axiom 1 or +1 = +1 is valid. Based on this axiom, we obtain

cµν = cµν (225)

or (see equation 35, p. 19 and equation 36, p. 20)

Gµν −aµν =

(
R
2
×gµν

)
−
(
Λ×gµν

)
−dµν (226)

We rearrange equation 226. It is

Rµν −
(

R
2
×gµν

)
−aµν =

(
R
2
×gµν

)
−
(
Λ×gµν

)
−dµν (227)

Based on equation 113, p. 30, equation 227 changes slightly. We obtain(
R
D
×gµν

)
−
(

R
2
×gµν

)
−aµν =

(
R
2
×gµν

)
−
(
Λ×gµν

)
−dµν (228)

Equation 228 is generally valid. Rearranging equation 228, it is(
R
D
×gµν

)
−
(

R
2
×gµν

)
−
(

R
2
×gµν

)
−aµν =−

(
Λ×gµν

)
−dµν (229)

or (
R
D
×gµν

)
−
(
R×gµν

)
−aµν =−

(
Λ×gµν

)
−dµν (230)
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The unrestricted validity of the previous equation (see equation 230) is also given if the tensor of
ordinary matter aµν vanishes or if aµν = 0. We obtain(

R
D
×gµν

)
−
(
R×gµν

)
=−

(
Λ×gµν

)
−dµν (231)

The unrestricted validity of the previous equation (see equation231) is also given under conditions of
D = 1 space-time dimension. We obtain(

R
1
×gµν

)
−
(
R×gµν

)
=−

(
Λ×gµν

)
−dµν (232)

or
0 =−

(
Λ×gµν

)
−dµν (233)

The geometrical structure of the basic field of nature dµν is given as

dµν =−
(
Λ×gµν

)
(234)

□

Remark 3.5. The geometric structure of the field dµν has been determined as dµν = −
(
Λ×gµν

)
.

However, this raises at once several fundamental and far-reaching questions. Under the most different
aspects, the Einstein cosmological constant Λ, usually represented by the Greek letter Λ (Lambda), is
viewed as equivalent to the ‘mass ’of empty space (which itself can be either positive or negative), and
manny times associated with ‘vacuum energy’ (see also Huterer and Turner, 1999, Zwicky, 1933). In
particular, as it may and will be in the end, the basic field of nature dµν appears to be an underlying
background field that exists in space throughout the entire Universe. Is vacuum as such the fourth basic
field of nature which is the underlying background field given throughout the entire Universe?

3.7.3. Theorem. The geometrical structure of the basic field of nature dµν

Theorem 26 (The geometrical structure of the basic field of nature dµν ). The geometrical structure of
the basic field of nature dµν is given as

dµν =−
(
Λ×gµν

)
(235)

Proof by direct proof. Axiom 1 or +1 = +1 is valid. Based on this axiom, we obtain (see equation 188,
p. 43)

cµν +dµν =

(
R
2
×gµν

)
−
(
Λ×gµν

)
(236)

Equation 236 is valid even if cµν +dµν =

(
R
2
×gµν

)
−
(
Λ×gµν

)
= 0. Under these circumstances,

it is
cµν =−dµν (237)
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Under conditions where cµν +dµν =

(
R
2
×gµν

)
−
(
Λ×gµν

)
= 0, it is equally

(
R
2
×gµν

)
=
(
Λ×gµν

)
(238)

Combining equation 237 and equation 238, it is either

dµν =−cµν =

(
R
2
×gµν

)
(239)

or
−dµν =+cµν =+

(
Λ×gµν

)
(240)

which is equal to
+dµν =−

(
Λ×gµν

)
(241)

However, based on equation equation 188 (see equation 188, p. 43) we know that bµν + dµν has to

be equal to bµν +dµν =

(
R
2
×gµν

)
. If the relationship dµν =

(
R
2
×gµν

)
(see equation 239) where

true, it would follow that (
R
2
×gµν

)
=+bµν +dµν =+bµν +

(
R
2
×gµν

)
(242)

In other words, we would have to accept in general that

bµν = 0 (243)

which is not the fact under any circumstances. Therefore, we must accept that the geometrical structure
of the basic field of nature dµν is given as

dµν =−
(
Λ×gµν

)
(244)

□

3.7.4. Theorem. The determination of Λ

We were able to identify the fourth field of nature so as to be dµν = −Λ× gµν . Yet, we have not
determined at least one concrete geometrical structure of this field or even the physical value of the
same. We want to make up for this at the following point.

Theorem 27 (The determination of Λ. The concrete geometrical structure of the forth field of nature,
dµν , including Λ itself, is given as

−Λ×gµν =

(
+

(
R
D

)
−
(

R
2

)
−
(

4×2×π × γ ×T
c4 ×D

))
×gµν (245)
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Proof by direct proof. Axiom 1 or
+1 =+1 (246)

is true. Therefore, it is equally true that(
4×2×π × γ

c4

)
×T µν =

(
4×2×π × γ

c4

)
×T µν (247)

We have at the present time neither an experimental nor a theoretical reason to assume that the Einstein
field equations are erroneous. As a result of Einstein’s publications (Einstein, 1915, 1916, 1917, 1935,
Einstein and Sitter, 1932) we arrive at the following Einstein’s field equations.

Rµν −
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
=

(
4×2×π × γ

c4

)
×T µν (248)

Taking the trace of both sides of equation 248, it is(
Rµν ×gµν

)
−
((

R
2

)
×gµν ×gµν

)
+
(
Λ×gµν ×gµν

)
=

(
4×2×π × γ

c4

)
×T µν ×gµν (249)

or

(R)−
((

R
2

)
×gµν ×gµν

)
+
(
Λ×gµν ×gµν

)
=

(
4×2×π × γ

c4

)
×T (250)

and equally (see equation 398, p. 95)

(R)−
((

R
2

)
×D

)
+(Λ×D) =

(
4×2×π × γ

c4

)
×T (251)

Changing equation 251, it is(
R
D

)
−
(

R
2

)
+(Λ) =

(
4×2×π × γ ×T

c4 ×D

)
(252)

Based on the result of equation 252, the value of +Λ is given as

+Λ =

(
4×2×π × γ ×T

c4 ×D

)
−
(

R
D

)
+

(
R
2

)
(253)

At this point it is necessary to direct the attention of the reader to a very important detail of the equation
253. The space-time dimension D, which can vary, is an essential part of the determination of Λ.
Equation 253 is therefore a clear mathematical proof that the cosmological constant Λ (Einstein,
1917) is not a constant. Based on the result of equation 252, the value of −Λ is determined as

−Λ =+

(
R
D

)
−
(

R
2

)
−
(

4×2×π × γ ×T
c4 ×D

)
(254)

In general, the geometrical form of the field dµν = −Λ×gµν is determined as

−Λ×gµν =

(
+

(
R
D

)
−
(

R
2

)
−
(

4×2×π × γ ×T
c4 ×D

))
×gµν (255)

□
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3.8. The basic field of nature bµν

3.8.1. Theorem. The geometrical structure of the basic field of nature bµν

Theorem 28 (The geometrical structure of the basic field of nature bµν ). The geometrical structure of
the basic field of nature bµν is given as

bµν = (b)×gµν =

(
R
2
+Λ

)
×gµν (256)

Proof by direct proof. Here we would like to reiterate once again that the following relationship has
been established (and not defined) (Barukčić, 2016b,c, 2020b,c,d, 2021b) . It is

bµν +dµν =

(
R
2
×gµν

)
(257)

The tensor dµν has been determined as dµν = −
(
Λ×gµν

)
(see equation 222, p. 49). Equation 257

changes slightly. It is

bµν −
(
Λ×gµν

)
=

(
R
2
×gµν

)
(258)

The geometrical structure of the stress-energy momentum tensor of the field bµν (hopefully he stress-
energy (see Hughston and Tod, 1990, p. 38) momentum tensor of the electromagnetic(see Lehmkuhl,
2011, p. 13) ) is given as

bµν =

(
R
2
×gµν

)
+
(
Λ×gµν

)
(259)

□

Remark 3.6. Under conditions where equation 259 derived as bµν =

(
R
2
×gµν

)
+
(
Λ×gµν

)
is the

geometrized (Kalinowski, 1988) form of the stress-energy momentum tensor of the electromagnetic
field, Λ could be measured or calculated exactly as(

Λ×gµν

)
≡
(

1
4×π

×
((

Fµ c ×Fν
c)+(1

4
×gµν ×Fde ×Fde

)))
−
(

R
2
×gµν

)
(260)

Recall, F is Faraday’s electromagnetic field tensor. As long as we are allowed to agree with Tonnelat’s
position, a unified field theory is “... a theory joining the gravitational and the electromagnetic field
into one single hyperfield whose equations represent the conditions imposed on the geometrical struc-
ture of the universe.” (see Tonnelat et al., 1955, p. 5) The geometrization of the fundamental fields
of nature that has now been accomplished can be helpful in this view. Under these assumptions, the
geometrized hyper-field for electromagnetism and gravitation might be given as

cµν +bµν =

(
R
2
×gµν

)
+

(
R
2
×gµν

)
+
(
Λ×gµν

)
=
(
R×gµν

)
+
(
Λ×gµν

)
(261)
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There seem to exist conditions where the tensor of pure non-locality is given by the equation

bµν + cµν +dµν =
(
R×gµν

)
+
(
Λ×gµν

)
−
(
Λ×gµν

)
=
(
R×gµν

)
(262)

Table 6 is intended to give us a simple and appropriate overview of the relationships that have been
established so far.

Curvature
YES NO

Momentum YES aµν =

(
R
D
−R
)
×gµν bµν ≡

(
R
2
+

(
4×2×π × γ ×T

c4

)
−
(

R
D

)
+

(
R
2

))
×gµν aµν + bµν ≡

(
4×2×π × γ ×T

c4 ×D

)
×gµν

NO cµν ≡
(

R
2

)
×gµν dµν ≡ −Λ×gµν =

(
+

(
R
D

)
−
(

R
2

)
−
(

4×2×π × γ ×T
c4

))
×gµν cµν + dµν =

(
R
D
− 4×2×π × γ ×T

c4 ×D

)
×gµν

aµν + cµν = Gµν ≡
(

R
D
− R

2

)
×gµν bµν + dµν =

R
2
× gµν Rµν ≡ R

D
×gµν ≡ aµν +bµν + cµν +dµν

Table 6. The four basic fields of nature geometrized.

We are again and again confronted with the challenge that various astronomers are claiming that
the majority of objective reality, i. e. the cosmos itself, consists of mysterious, invisible stuff that
surrounds us, the so called dark matter (see Zwicky, 1933) and dark energy (see Turner, 1999).
Unfortunately, we must also concede at the same time that the notions dark matter and dark energy
have yet to be adequately (or even fully) understood or clearly defined. In short, is there a difference
between dark energy and dark matter at all and what is the difference? The assumption is that dark
matter works like an attractive force and slows down the expansion of the cosmos, while dark energy
is a sort of anti-gravity and speeds the expansion of the cosmos up. At this point we would like to ask
the question whether these lines of thought are valid even for a single photon itself? In the event that
we can answer this question unambiguously in the positive, there are a series of implications. Why
does a single photon, emitted somewhere out there more than 13 billion years ago, keep on moving
forward? What drives such a photon, what accelerates it? Meanwhile, we have been able to identify
Λ as a dominating part of photon (Barukčić, 2021a) . We have reason to believe that Λ seems to
be that which always drives a single photon forward. However, a single photon also seems to contain
within itself the other of itself, a moment under which the electromagnetic field is attracted, collapses
and loses its own meaning. Such circumstances are dominated by a graviton (Barukčić, 2021a). In
particular and only with the utmost caution do these lines of thought give rise to the hope that notion
‘dark energy’ (see Perlmutter et al., 1999, Riess et al., 1998) could be identical with

dark energy = Λ×gµν (263)

while the concept of ‘dark matter ’could possibly be found in the field

dark matter =
R
2
×gµν (264)

It is however more than necessary to emphasise at this point strongly that these lines of pure specula-
tions should not be taken for granted as verified human knowledge.
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3.8.2. Theorem. The geometrical structure of the field of nature bµν

Einstein’s general theory of relativity is not the end of all wisdom but only one small stepping stone
towards the ultimate goal of all physics, the unified field theory. A unified field theory should even
be able to integrate somehow both gravitational and electromagnetic fields (see Einstein, 1925) into
a single hyper-field. Unfortunately, so far the search for the holy grail of all physics, the unified
field theory, has not been crowned with success. Solving the issue of the unified field theory turns out
to be more difficult than expected. Even Einstein himself who brilliantly succeeded in geometrizing
gravity was at the end unable to accomplish the geometrization of electromagnetism too. Einstein’s
unified field theory program (see Sauer, 2014) or the whole of physics seen as an unique entity
is characterized in total by more than forty technical papers on the unified field theory. Einstein is
writing:

“It is only the circumstance that we have not sufficient knowledge of the electromagnetic field of
concentrated charges that compels us, provisionally, to leave undetermined in presenting the theory,
the true form of this tensor. ”

(see Einstein, 1923b, p. 91 )

It is not necessarily mandatory to describe all that exists geometrically or to apply geometrical methods
in science whenever it is possible and more or less rightly so. It is the unity of nature at the end which is
the foundation for the unity of science and of physics itself. Historically, Einstein’s transition from the
special theory of relativity to the general theory of relativity was carried out with the aid of the mathe-
matical technology of tensors. However, this does not exclude in any way that objective reality can be
described completely with the help of e.g. the probability (see Barukčić, 2022) theory too. Whatever
the case may be, it is not very astounding that since Einstein’s very remarkable accomplishment of
the description of gravity as a geometric phenomenon of curved space time, numerous great efforts,
including Einstein (see Sauer, 2014) himself, have been made to geometrize electromagnetism too in
order to end up at the unified field theory. However, electromagnetism itself even if identical with grav-
ity under certain aspects is not the same as gravity is, electromagnetism is different from gravity too.
Therefore, finding a suitable geometric description of the stress-energy tensor of electromagnetism is
the first great problem for geometrizing electromagnetism. At this point we want to dare a completely
new approach to this issue in order identify the geometrical structure of the stress-energy tensor of the
electromagnetic field, denoted as bµν , very precisely.

Theorem 29 (The geometrical structure of the field of nature bµν ). The geometrical structure of the
basic field of nature bµν is given as

bµν =

(
R
2
+Λ

)
×gµν (265)

Proof by direct proof. Axiom 1 or +1=+1 is valid and therefore Gµν = Gµν or Gµν +
(
Λ×gµν

)
=
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Gµν +
(
Λ×gµν

)
too. We obtain

aµν +bµν ≡ Gµν +
(
Λ×gµν

)
≡ Rµν −

((
R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

4×2×π × γ

c4

)
×T µν

(266)

Equation 266 simplifies as

bµν ≡ Gµν +
(
Λ×gµν

)
−aµν

≡ Rµν −
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
−aµν

≡
(

4×2×π × γ

c4

)
×T µν −aµν

(267)

or as

bµν +0 ≡ Rµν −
((

R
2

)
×gµν

)
+0+

(
Λ×gµν

)
−aµν (268)

Rearranging equation 268, it is

bµν ≡ Rµν −
((

R
2

)
×gµν

)
−
(

R
2

)
×gµν +

(
R
2

)
×gµν +

(
Λ×gµν

)
−aµν (269)

or

bµν ≡ Rµν −
(
R×gµν

)
−aµν +

(
R
2

)
×gµν +

(
Λ×gµν

)
(270)

According to equation 195, p. 46, it is aµν =
(
Rµν

)
−
(
R×gµν

)
. Equation 270 becomes

bµν ≡ aµν −aµν +

(
R
2

)
×gµν +

(
Λ×gµν

)
(271)

It is

bµν =

(
R
2
×gµν

)
+
(
Λ×gµν

)
(272)

In general, the geometrical structure of the basic field of nature bµν is given as

bµν =

(
R
2
+Λ

)
×gµν (273)

□

CAUSATION ISSN: 1863-9542 https://www.doi.org/10.5281/zenodo.7316360 Volume 18, Issue 4, 5–141

https://portal.issn.org/resource/ISSN/1863-9542
https://www.doi.org/10.5281/zenodo.7316360


58

3.8.3. Theorem. The geometrical structure of the field of nature bµν

Theoretically, it may be advantageous to look at the vacuum in greater detail. This in turn could
hopefully enable us to determine the geometric structure of the stress-energy tensor of the electromag-
netic field.

Theorem 30 (The geometrical structure of the field of nature bµν ). The geometrical structure of the
basic field of nature bµν is given as

bµν =

(
R
2
+Λ

)
×gµν (274)

Proof by direct proof. Axiom 1 or +1=+1 is valid and therefore

Rµν −
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

4×2×π × γ

c4

)
×T µν

≡ aµν +bµν

(275)

Adding +0, equation 275 doesn’t change. It is

Rµν −
((

R
2

)
×gµν

)
+0+

(
Λ×gµν

)
≡
(

4×2×π × γ

c4

)
×T µν +0

≡ aµν +bµν +0
(276)

It is +
((

R
2

)
×gµν

)
−
((

R
2

)
×gµν

)
=+0. Equation 276 is reformulated. We obtain

Rµν −
((

R
2

)
×gµν

)
−
((

R
2

)
×gµν

)
+

((
R
2

)
×gµν

)
︸                                             ︷︷                                             ︸

+0

+
(
Λ×gµν

)
≡
(

4×2×π × γ

c4

)
×T µν

≡ aµν +bµν

(277)

Simplifying equation 277, it is

Rµν −
(
(R)×gµν

)
+

((
R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

4×2×π × γ

c4

)
×T µν

≡ aµν +bµν

(278)

The energy–momentum tensor
(

4×2×π × γ

c4

)
×T µν is non-zero in some regions of space-time and

zero in others. However, if the energy–momentum tensor
(

4×2×π × γ

c4

)
×T µν is zero in the region

under consideration, then the Einstein field equations are also referred to as the vacuum field equations.
A vacuum solution of the Einstein field equations is a manifold whose Einstein tensor Gµν vanishes.
At the end, in empty space, the Einstein’s field equation reduce to Rµν = 0. As published somewhere

CAUSATION ISSN: 1863-9542 https://www.doi.org/10.5281/zenodo.7316360 Volume 18, Issue 4, 5–141

https://portal.issn.org/resource/ISSN/1863-9542
https://www.doi.org/10.5281/zenodo.7316360


59

else, manifolds with a vanishing Ricci tensor, Rµν = 0, are referred to as Ricci-flat manifolds. At this
point, we do not want to present any new aspects of the vacuum field equations. Nonetheless, there

are circumstances, where the condition
(

4×2×π × γ

c4

)
×T µν = 0 is given. Under theses conditions,

equation 278 changes slightly. It is

Rµν −
(
(R)×gµν

)
+

((
R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

4×2×π × γ

c4

)
×T µν ≡+0

≡ aµν +bµν ≡+0
(279)

In other words, it is ((
R
2

)
×gµν

)
+
(
Λ×gµν

)
≡−Rµν +

(
(R)×gµν

)
(280)

or

−
((

R
2

)
×gµν

)
−
(
Λ×gµν

)
≡+Rµν −

(
(R)×gµν

)
(281)

It is equally

+bµν ≡−aµν (282)

or

−bµν ≡+aµν (283)

Under these conditions, we are able to determine the geometrical structure of the stress-energy tensor

of the filed bµν very precisely either as +Rµν −
(
(R)×gµν

)
or as +

((
R
2

)
×gµν

)
+
(
Λ×gµν

)
(see

equation 280 - equation 283). However, what is it at the end? Based on equation 188, it has to be that

+bµν +dµν ≡
((

R
2

)
×gµν

)
(284)

The geometrical structure of the tensor dµν has been identified several times as +dµν = −
(
Λ×gµν

)
(see: equation 222, equation 234, equation 244). Equation 284 changes slightly. It is

+bµν −
(
Λ×gµν

)
≡
((

R
2

)
×gµν

)
(285)

While equation 280 until equation 283 give us only an approximate picture of the geometric structure
of the field bµν , equation 285 clearly shows us what the geometric structure of the field bµν has to be.
The geometric structure of the field bµν is given as

bµν =

(
R
2
+Λ

)
×gµν (286)

□
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To understand how far one can go it is necessary to ask the question whether electromagnetism is
completely foreign to geometry? Einstein’s field equations of general relativity have more or less a
purely local character. As a consequence, Einstein’s description of gravitation in terms of curved space
need not imply that electromagnetism itself has to be described geometrically too. Nonetheless, as
long as we are authorised to rely on equation 286 the basic field of nature bµν , which is presumably
the stress-energy tensor of electromagnetism, has been described geometrically too.

3.8.4. The geometrical structure of stress energy tensor of the electromagnetic field

At this stage of the research it is possible to specify that we have been able to determine the geo-
metric structure of the field bµν with certainty. However, at this point, we need to provide some clear
clarifications. The lines of thought presented here are based on Einstein’s well-known description of
the relationship between between ordinary matter and the elcetromagentic field as: “Wir unterscheiden
im folgenden zwischen ‘Gravitationsfeld’und ‘Materie’, in dem Sinne, daß alles außer dem Gravita-
tionsfeld als ‘Materie’bezeichnet wird, also nicht nur die ‘Materie’im üblichen Sinne, sondern auch
das elektromagnetische Feld. ” (Einstein, 1916, p. 802/803) . As a result of this, we decomposed the
stress-energy tensor of matter into the stress-energy tensor of ordinary matter, denoted as aµν , and into
the stress-energy tensor of the electromagnetic field, denoted as bµν . Despite all this, we have to ask
ourselves how certain we can be that bµν is at the end that what it is assumed to be, the geometrical
form of the the stress-energy tensor of the electromagnetic field. Why should the tensor bµν not be
identical with the stress-energy tensor of relativistic kinetic energy?

bµν =

(
R
2
+Λ

)
×gµν = stress-energy tensor of relativistic-kinetic energy? (287)

These issues can be clarified in principle. Firstly. Equation 286 is valid even under circumstances
where the tensor aµν = 0. Under these circumstances, the tensor bµν contains all froms of stress-energy
and momentum while the relativistic kinetic energy itself is no longer given, the same has passed over
into the pure electromagentic field. Under these circumstances, the tensor bµν is the stress-energy
tensor of the electromagentic field. Additionally, it is a tensorial equation which must hold under all
cooridnate systems. Secondly. If bµν is the stress-energy tensor of the electromagnetic field, then the
following equation need to be true too.(

R
2
×gµν

)
+
(
Λ×gµν

)
≡
(

1
4×π

×
((

Fµ c ×Fν
c)+(1

4
×gµν ×Fde ×Fde

)))
(288)

which can be proofed in principle. Thirdly. In the following we assume for now that the laws of the
special theory of relativity (STR), in particular the unity and the struggle between a particle and a

wave which have been described and derived as
(
(0E t)

2

(rE t)2

)
+

(
(wE t)

2

(rE t)2

)
=+1 (see Barukčić, Ilija,

2022, p. 17) , are extended by the insights of the theory of general relativity (GTR) but not completely
disproved or invalidated. Let us assume, that bµν is the stress-energy tensor of relativistic kinetic
energy. Under these assumptions, the stress-energy tensor of the electromagnetic field would have to
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follow as

(wE t)×gµν =

(
2

√(((
R
2

)
+(Λ)

)
×
(

4×2×π × γ ×T
c4 ×D

)))
×gµν (289)

However, equation 288 and equation 289 were both true simultaneously only under conditions where
aµν = 0, which is to restricted. Fourthly. In last consequence, the previous considerations (equation
289) would demand that the content of the stress energy tensor of matter is at the end (energy2/...) and
not (energy/...). In this case, the equations derived would have to be modified slightly.

In general, from the point of view of special theory of relativity, the relationship between ordinary
matter and electromagnetic wave would be given as follows.

(wE t)≡ (rE t)× 2

√
1− (0E t)

2

(rE t)2 = (rE t)×
2

√
1−

(
0mt × c2)× (0mt × c2)
(rmt × c2)× (rmt × c2)

= (rE t)× 2

√
1− (0mt)

2

(rmt)2 = (rE t)×
2

√√√√√
1−

(rmt)
2 ×
(

1− v2

c2

)
(rmt)2 = (rE t)×

2

√
v2

c2 (290)

which can be simplified under some conditions as

wE t =
v
c
× (rE t) (291)

where v is the relative velocity. Every ordinary matter is associated with an electromagnetic wave.
However, at very small everyday relative velocities v this effect is in the end negligibly small but still
given. According to STR, the ordinary matter, denoted as a E t, is given as

aE t = rE t −wE t = (rE t)− (rE t)×
2

√
v2

c2 = (rE t)×

1−
2

√
v2

c2

 (292)

There are circumstances where the stress-energy tensor of ordinary matter is given as

(aE t)×gµν =

1−
2

√
v2

c2

× 8×π × γ ×T
c4 ×D

×gµν (293)

while the stress-energy tensor of electromagnetic wave/field would be given as

(wE t)×gµν =

 2

√
v2

c2

× 8×π × γ ×T
c4 ×D

×gµν (294)

There might be circumstances given, where the stress-energy tensor of ordinary matter, denoted as aµν ,
is identical with the stress-energy tensor of rest-mass, denoted by special theory of relaltivity as 0 E t.
Nontheless, this need not to be the case under any circumstances given. The relationship between “rest
energy ”, denoted as 0E t and ordinary energy aE t would be given as (see equation 26)

(0E t)×gµν =

 2

√
1− v2

c2

×
(

8×π × γ ×T
c4 ×D

)×gµν︸                                                        ︷︷                                                        ︸
rest energy/matter 0 E t

=


(

2

√
1− v2

c2

)
(

1− 2

√
v2

c2

) × (aE t)

×gµν

(295)
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3.9. The evolution or self-organisation of objective reality

3.9.1. Objective reality without ordinary matter

Electrovacuum solution (electro-vacuum) is one of the known exact solutions of the Einstein field
equations. The stress-energy momentum tensor (see equation 5.44) is defined as

Eµν ≡ aµν +bµν (296)

Under conditions where objective reality is determined by a vanishing tensor of ordinary matter
(aµν = 0) we obtain

Eµν ≡ (aµν = 0)+bµν (297)

or

bµν ≡ Eµν ≡
(

R
D
− R

2
+Λ

)
×gµν (298)

However, equation 298 is given only under certain circumstances. Nonetheless, under these conditions,
all stress energy and momentum is included in the stress energy tensor of the electromagnetic field.
Nonetheless, a vanishing tenors of ordinary matter does not imply a vanishing of Einstein’s tensor.
The conditions outlined before do not imply that Einstein’s tensor (Gµν ) has to vanish too. Table 7 is
providing us an overview of these relationships.

Curvature
YES NO

Momentum YES aµν = 0 bµν ≡
(

R
D
− R

2
+Λ

)
×gµν

8×π × γ

c4 ×D
× gµν ≡

(
R
D
− R

2
+Λ

)
×gµν

NO cµν ≡
(

R
D
− R

2

)
×gµν dµν ≡ −Λ× gµν - (

R
D
−R)×gµν

(
R
2
−Λ

)
×gµν

Gµν ≡
(

R
D
− R

2

)
×gµν

R
2
× gµν Rµν ≡ R

D
×gµν - R×gµν + R×gµν

Table 7. Objective reality without ordinary matter.

It is important to emphasise here that objective relativity in which no ordinary matter is given (aµν

= 0) is at the same time also a world in which momentum excludes curvature and vice versa. Curvature
excludes momentum. But at the same time it is also a world which is not dead and not without any
changes but a world full of life. We have to be theoretically prepared for the possibility that such a
world might be the one of pure non-locality. Logically it does not seem very convincing that ordinary
matter as something already concrete have been given at the beginning of this world. So the issue
arises whether before the state of locality (ordinary matter is given) of objective reality, the state of non
locality (no ordinary matter) of objective reality has been given. In other words, has the locality of this
world developed out of the state of non-locality and is this still the case today?
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3.9.2. Objective reality under conditions of D=1 dimension

The world under the condition of D=1 space-time dimension may be a very strange world, but the
same exists nevertheless.

Theorem 31 (Objective reality under conditions of D=1 dimension). A special property of objective
reality under conditions of D=1 space-time dimension is described by the relationship

Rµν = R×gµν (299)

Proof by direct proof. The Einstein (Barukčić, 2016b,c, 2020b,c,d,d, 2021b, Einstein, 1915, 1916,
1917, 1935, Einstein and Sitter, 1932) field equations (see equation 497) are defined as(

R
D
×gµν

)
−
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
︸                                                       ︷︷                                                       ︸

T he le f t−hand side

≡
(

4×2×π × γ ×T
c4 ×D

)
×gµν︸                                 ︷︷                                 ︸

T he right−hand side

(300)

Under conditions of D = 1 space-time dimension, the Einstein field equations becomes(
R
1
×gµν

)
−
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

4×2×π × γ ×T
c4 ×1

)
×gµν (301)

The Einstein field equations simplifies under conditions D = 1 space-time dimension as

+

((
R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

4×2×π × γ ×T
c4 ×1

)
×gµν (302)

Under these conditions (D = 1 space-time dimension), the Ricci tensor Rµν becomes

Rµν =

(
R
D
×gµν

)
= R×gµν (303)

but not Rµν = 0. Furthermore, under these conditions (D=1 space-time dimension), Einstein’s tensor
Gµν becomes

Gµν =

(
R
1
×gµν

)
−
(

R
2
×gµν

)
=
(
R×gµν

)
−
(

R
2
×gµν

)
=

(
R
2
×gµν

)
(304)

Under conditions of D=1 space-time dimension and in contrast to a vacuum solution of general rela-
tivity neither the Einstein tensor Gµν vanishes nor the stress–energy tensor Eµν vanishes nor does the
Ricci tensor Rµν vanishes. It is of extraordinary importance that under conditions of D=1 space-time
dimension the tensor dµν becomes

dµν ≡−Λ×gµν − (
R
D
−R)×gµν)≡−Λ×gµν − (

R
1
−R)×gµν)≡−Λ×gµν − (0)≡−Λ×gµν

(305)
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Under conditions of D=1 space-time dimension the tensor cµν is determined as

cµν ≡ R
2
×gµν −Λ×gµν −dµν ≡ R

2
×gµν −Λ×gµν − (−Λ×gµν)≡

R
2
×gµν (306)

Objective reality under the condition of D=1 space-time dimension is described by the following pic-
ture (see table 8) in greater detail.

Curvature
YES NO

Momentum YES aµν = 0 bµν ≡
(

R
2
+Λ

)
×gµν

(
R
2
+Λ

)
×gµν

NO cµν ≡
(

R
2

)
×gµν dµν ≡ −Λ× gµν

(
R
2
−Λ

)
×gµν

Gµν ≡
(

R
2

)
×gµν

R
2
× gµν Rµν ≡ R × gµν

Table 8. Objective reality under conditions of D=1 space-time dimension.

□

In general relativity, a vacuum region of objective reality is understood as a region whose Einstein
tensor Gµν vanishes. The Einstein tensor vanishes if

Gµν = Rµν −
(

R
2

)
×gµν =

(
R
D
×gµν

)
−
((

R
2

)
×gµν

)
= 0 (307)

which is especially the case under conditions of D = 2 space-time dimension. In general, vacuum
solutions of the Einstein fields equations are distinct from the electrovacuum solutions (electromagnetic
field, gravitational field) and are also distinct from the lambdavacuum solutions. In lambdavacuum
solutions of the Einstein fields equations the only term in the stress–energy tensor is the cosmological
constant term.
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Halved standard normal distributionSpace-time dimension and evolution of objective reality
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Figure 4. The evolution of objective reality

Under the previous and other conditions, one more point should be noted. The constancy of the
speed of the light c in vacuum is something relative but not something absolute. Einstein is writing:

“Dagegen bin ich der Ansicht, daß das Prinzip der Konstanz der Lichtgeschwindigkeit sich nur
insoweit aufrecht erhalten läßt, als man sich auf raum - zeitliche Gebiete von konstantem Grav-
itationspotential beschränkt. Hier liegt nach meiner Meinung die Grenze der Gültigkeit ... des
Prinzips der Konstanz der Lichtgeschwindigkeit und damit unserer heutigen Relativitätstheorie.
”

(see also Einstein, 1912, p. 1062)

Translated into English. ‘On the other hand I am of the opinion that the principle of the constancy
of the speed of light can be maintained only in so far as one restricts oneself to spatio-temporal areas
of constant gravitational potential. Here lies in my opinion the limit of the validity... of the principle
of the constancy of the speed of light and with it of our today’s theory of relativity.’
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3.9.3. Objective reality under conditions of D=2 dimension

Theorem 32 (Objective reality under conditions of D=2 dimension). An objective reality can be de-
termined by two space-time dimension. Under conditions of D=2 space-time dimension is determined
by the relationship

Gµν = 0 (308)

Proof by direct proof. The Einstein (Barukčić, 2016b,c, 2020b,c,d,d, 2021b, Einstein, 1915, 1916,
1917, 1935, Einstein and Sitter, 1932) field equations (see equation 497) are defined as(

R
D
×gµν

)
−
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
︸                                                       ︷︷                                                       ︸

T he le f t−hand side

≡
(

4×2×π × γ ×T
c4 ×D

)
×gµν︸                                 ︷︷                                 ︸

T he right−hand side

(309)

Under conditions of D = 2 space-time dimension, the Einstein field equations becomes(
R
2
×gµν

)
−
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

4×2×π × γ ×T
c4 ×2

)
×gµν (310)

or

+
(
Λ×gµν

)
≡
(

4×π × γ ×T
c4

)
×gµν (311)

Under these conditions, the Ricci tensor becomes

Rµν =

(
R
2
×gµν

)
(312)

but not Rµν = 0. Under conditions of D=2 space-time dimension, Einstein’s tensor becomes

Gµν =

(
R
D
×gµν

)
−
((

R
2

)
×gµν

)
=

(
R
2
×gµν

)
−
(

R
2
×gµν

)
= 0 (313)

□

Conditions of D=2 space-time dimension are an exact solution of the Einstein field equation in
which the only term in the stress–energy tensor is a cosmological constant term, neither the Ricci tensor
vanishes nor the stress–energy tensor vanishes. Such an objective reality is related to the lambdavac-
uum solution of general relativity but not identical with the same. In general relativity, a lambdavacuum
solution as an exact solution to the Einstein field equation is given as

Gµν =−
(
Λ×gµν

)
(314)

The general stance is that the Einstein tensor Gµν vanishes if and only if the Ricci tensor Rµν vanishes.
This is not completely correct. Clearly, if the Ricci scalar R = 0, then the Einstein tensor Gµν vanishes
and the Ricci tensor Rµν vanishes too. However, there are circumstances where the Einstein tensor
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Gµν vanishes while the Ricci tensor Rµν does not vanishes, i. e. objective realty in 2 space-time
dimensions.

Curvature
YES NO

Momentum YES aµν ≡ −
(

R
2

)
×gµν bµν ≡

(
R
2
+Λ

)
×gµν (Λ)×gµν

NO cµν ≡ +

(
R
2

)
×gµν dµν ≡ −Λ× gµν

(
R
2
−Λ

)
×gµν

Gµν ≡ 0
R
2
× gµν Rµν ≡

(
R
2

)
×gµν

Table 9. Objective reality under conditions of D=2 space-time dimension.

Even under the conditions of D=2 space-time dimensions objective reality seems to be a very special
world.
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3.10. The generally covariant Planck-Einstein relation

Historically, previously separated have been unified by time. Thus far, a reader might often get
the impression that we are on the verge of a theory of everything, a unified field theory. The hope is
that combining gravity with the other fundamental forces of nature is just a matter of technical details.
Yet we still do not have a unified field theory. The main reason is that we cannot yet construct a
theory which is able to treat gravity quantum-mechanically. In the following theorem, the quantization
of gravity is discussed by analogy with the quantization of the electromagnetic field. The following,
purely speculative lines of thought are only meant to point out one theoretical possibility of unifying
general relativity and quantum theory over the Planck–Einstein (Einstein, 1905a, Planck, 1901) relation
ℏ×ω = h× f .

3.10.1. Theorem. Frequency and Einstein field equations

Theorem 33 (Frequency and Einstein field equations). The frequency according to Einstein field equa-
tions is given by the relationship

f =
(

4× γ ×T
ℏ× c4 ×D

)
(315)

Proof by direct proof. Axiom 1 or
+1 =+1 (316)

is true. Therefore, it is equally true that
E = h× f (317)

and at the end
ℏ×ω = h× f (318)

Multiplying equation 318, we obtain the generally covarinat form as

ℏ×ω ×gµν = h× f ×gµν (319)

We assume at this step that there is no contradiction between quantum mechanics and relativity theory.
There are circumstances under which equation 319 may be equated with the stress-energy tensor of
Einstein’s general relativity (see equation 497). Therefore it follows that

h× f ×gµν =

(
4×2×π × γ ×T

c4 ×D

)
×gµν (320)

Equation 320 is equivalent with the relationship

h× f ×gµν = h×
(

4× γ ×T
ℏ× c4 ×D

)
×gµν (321)

Simplifying equation 321, it is

f =
c
λ
=

(
4× γ ×T
ℏ× c4 ×D

)
(322)

□
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3.10.2. Theorem. The generally covariant form of the Planck-Einstein relation

Theorem 34 (The generally covariant form of the Planck-Einstein relation). The generally covariant
form of the Planck-Einstein relation is given as

ℏ×ωµν = h× f µν (323)

Proof by direct proof. Axiom 1 or +1 = +1 is valid. Based on this axiom, equation 159(
R
D
×gµν

)
−
(
R×gµν

)
+

(
R
2
×gµν

)
+
(
Λ×gµν

)
=

(
4×2×π × γ ×T

c4 ×D

)
×gµν (324)

changes to

ℏ×

(
R
D

)
− (R)+

(
R
2

)
+(Λ)

ℏ
×gµν =

(
4×h× γ ×T

c4 ×ℏ×D

)
×gµν (325)

and to

ℏ×

(
R
D

)
− (R)+

(
R
2

)
+(Λ)

ℏ
×gµν = h×

((
4× γ ×T
ℏ× c4 ×D

)
×gµν

)
(326)

The stress energy tensor (see equation 322) determined by frequency would be given as

f µν ≡
((

4× γ ×T
ℏ× c4 ×D

)
×gµν

)
(327)

and

ωµν ≡

(
R
D

)
− (R)+

(
R
2

)
+(Λ)

ℏ
×gµν (328)

The generally covariant Planck-Einstein relation would be given as

ℏ×ωµν = h× f µν (329)

□

An obvious and undeniable consequence of the foregoing is that we would have to accept that

ω =

(
R
D

)
− (R)+

(
R
2

)
+(Λ)

ℏ
(330)

and that

f =
(

4× γ ×T
ℏ× c4 ×D

)
(331)
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Of course, it goes without any kind of saying that it is by far not enough to define how objective reality
has to be. Pleasantly enough, it is much more satisfying to discover how objective reality really is.
Whatever attitude each of us may call his own, the forgoing, including Λ, should be experimentally
testable too. If an experimental proof should succeed, that equation 331 is correct, then very precise
measurements of Newton’s constant γ (under condition: D=4) as

γ =

(
f ×ℏ× c4

T

)
=

(
ℏ× c4

λ ×T

)
(332)

where λ is the wave-length. Laue’s scalar T (under condition: D=4) would be given as

T =

(
ℏ× c4

γ

)
× f = constant × f (333)

Equation 333 demand us to accept that Laue’s scalar and the frequency are more or less identical. This
is very hard to believe and more than disturbing. No wonder, a speculation remains a speculation.
Nonetheless, if something like equation 333 can be confirmed experimentally, new frontiers on our
planet as well as on far away worlds are within reach. In the final consequence, it ought to be possible
to prove definitely, whether Newton’s gravitational constant γ is a constant (Newton, 1669, 1687,
1711, 1732, 1744) or is not (Barukčić, 2006, Barukčić, 2015b, 2016a, 2021a) a constant. Furthermore,
under conditions where (

R
D
− R

2
+Λ

)
(

4×2×π ×T
c4 ×D

) ≡ γ ≡ F ×d2

m1 ×m1
(334)

we would have to accept Newton’s law of gravitation given as

F =

(
R
D
− R

2
+Λ

)
(

4×2×π ×T
c4 ×D

) × m1 ×m1

d2 =

D×
(

R
D
− R

2
+Λ

)
(4×2×π ×T )

× E1 ×E2

d2 (335)

which is not without difficulties as such. Newton’s gravitational constant γ appears to us to be depen-
dent at least on the number of space-time dimensions D as proposed by the following equation

γ =

D×
(

R
D
− R

2
+Λ

)
(4×2×π ×T )

× c4 (336)

and may not be a constant. Equation 336 suggests an experimental possibility to determine the number
of space-time dimensions D or of Λ et cetera experimentally.
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3.11. Quantum gravity and Schrödinger’s wave equation

There are numerous wave equations, including relativistic (Barukčić, 2013, Dirac, 1928, Gordon,
1926, Klein, 1926) ones. The Schrödinger equation, named after Erwin Schrödinger, is a non relativis-
tic wave equation (Schrödinger, Erwin Rudolf Josef Alexander, 1926) and more or less a quantum
mechanical counterpart of Newton’s second law in classical mechanics. In the following, we want to
establish a link between gravitation and Schrödinger’s wave equation.

3.11.1. Theorem. Quantum gravity and Schrödinger’s wave equation

Theorem 35 (Quantum gravity and Schrödinger’s wave equation). Incorporating both the principles
of general relativity and quantum theory leads to the wave equation of the gravitational field as(((

π ×ℏ
h

)
×
(
(2×R)− (R×D)

D

))
×Ψ

)
+(Λ×Ψ) = H ×Ψ (337)

Proof by direct proof. Axiom 1 or
+1 =+1 (338)

is true. Therefore, it is equally true that(
4×2×π × γ

c4

)
×T µν =

(
4×2×π × γ

c4

)
×T µν (339)

Based on the Einstein publications (Einstein, 1915, 1916, 1917, 1935, Einstein and Sitter, 1932) we
arrive at the following Einstein’s field equations.

Rµν −
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
=

(
4×2×π × γ

c4

)
×T µν (340)

Taking the trace of both sides of equation 340, it is(
Rµν ×gµν

)
−
((

R
2

)
×gµν ×gµν

)
+
(
Λ×gµν ×gµν

)
=

(
4×2×π × γ

c4

)
×T µν ×gµν (341)

or

(R)−
((

R
2

)
×gµν ×gµν

)
+
(
Λ×gµν ×gµν

)
=

(
4×2×π × γ

c4

)
×T (342)

and equally (see equation 398, p. 95)

(R)−
((

R
2

)
×D

)
+(Λ×D) =

(
4×2×π × γ

c4

)
×T (343)

Changing equation 343, it is(
R
D

)
−
(

R
2

)
+(Λ) =

(
4×2×π × γ ×T

c4 ×D

)
(344)
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Equation 344 can be rearranged as(
R
D

)
−
(

R
2

)
−
(

R
2

)
+

(
R
2

)
+(Λ) =

(
4×2×π × γ ×T

c4 ×D

)
(345)

or as (
R
D

)
− (R)+

(
R
2

)
+(Λ) =

(
4×2×π × γ ×T

c4 ×D

)
(346)

Normalising equation 346 it is((
R
D

)
− (R)

)
(

4×2×π × γ ×T
c4 ×D

) +

((
R
2

)
+(Λ)

)
(

4×2×π × γ ×T
c4 ×D

) =+1 (347)

Multiplying equation 347 by Schrödinger’s wave equation H ×Ψ , it is((
R
D

)
− (R)

)
(

4×2×π × γ ×T
c4 ×D

) ×H ×Ψ+

((
R
2

)
+(Λ)

)
(

4×2×π × γ ×T
c4 ×D

) ×H ×Ψ = H ×Ψ (348)

where H is the Hamiltonian and Ψ is the (time dependent/independent) wave function. In general, the
Hamiltonian H of a certain system is an operator corresponding to the total energy of that system. The

total energy of the system of general relativity is more or less
4×2×π × γ ×T

c4 ×D
. Under conditions

where
H = ek× 4×2×π × γ ×T

c4 ×D
(349)

equation 348 simplifies as((
R
D

)
− (R)

)
× ek×Ψ+

((
R
2

)
+(Λ)

)
× ek×Ψ = H ×Ψ (350)

In general, Dirac’s/Schrödinger’s (see also Dirac, 1926, Dirac and Fowler, 1926, Schrödinger, Erwin
Rudolf Josef Alexander, 1926) constant ℏ is determined as

ℏ≡ h
2×π

(351)

In other words, it is
1
2
=

(
π ×ℏ

h

)
(352)

This relationship is substituted into equation 350. A relativistic wave equation (see Barukčić, 2013)
is given as(((

R
D

)
− (R)

)
× ek×Ψ

)
+

(((
π ×ℏ

h

)
× (R+(2×Λ))

)
× ek×Ψ

)
= H ×Ψ (353)
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Under circumstances where ek = 1, equation 353 becomes(((
R
D

)
− (R)

)
×Ψ

)
+

(((
π ×ℏ

h

)
× (R+(2×Λ))

)
×Ψ

)
= H ×Ψ (354)

Normalising 344, it is ((
R
D

)
−
(

R
2

))
(

4×2×π × γ ×T
c4 ×D

) +
(Λ)(

4×2×π × γ ×T
c4 ×D

) =+1 (355)

Multiplying equation 355 by Schrödinger’s wave equation H ×Ψ , it is((
(2×R)− (R×D)

2×D

))
×H ×Ψ(

4×2×π × γ ×T
c4 ×D

) +
(Λ)×H ×Ψ(

4×2×π × γ ×T
c4 ×D

) = H ×Ψ (356)

The Hamiltonian operator H in quantum mechanics is the operator for the total energy of a certain
quantum mechanical system and acts on the wave function (capital Ψ) to produce a range of possible
eigenvalues for the eigenfunctions (lowercase ψ). So the unit of the Hamiltonian operator H is more or
less energy. In general relativity, the total energy is described by the stress-energy tenors of matter. We
have reason to believe there are circumstances where both describe more or less the same entity. As
already explained elsewhere, the metric tensor is unitless while the stress-energy tensor, has the unit
energy/volume = pressure = force/area et cetera (see Porta Mana, 2021). Einstein’s constant, denoted
as ek and defined as

ek =
4×2×π × γ

c4 (357)

converts the stress-energy to the units of the left side of the field equation, each term of which is of unit
1/L2. In the following, we define the Anti Einstein constant, denoted as ek,such that

H = ek× 4×2×π × γ ×T
c4 ×D

(358)

In the following, equation 356 simplifies as(((
π ×ℏ

h

)
×
(
(2×R)− (R×D)

D

))
× ek×Ψ

)
+(Λ× ek×Ψ) = H ×Ψ (359)

Under circumstances where ek = 1, equation 359 becomes(((
π ×ℏ

h

)
×
(
(2×R)− (R×D)

D

))
×Ψ

)
+(Λ×Ψ) = H ×Ψ (360)

□
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Given the canonical commutation relation (see Born and Jordan, 1925), it is ℏ =
[x, p]
i× I

. Thus far,

it makes good sense to substitute this relationship into equation 360. We obtain(((
π × [x, p]
i× I×h

)
×
(
(2×R)− (R×D)

D

))
×Ψ

)
+(Λ×Ψ) = H ×Ψ (361)

Though quantum gravity has been the subject of investigation for almost a century, this topic presents
not only extreme technical difficulties, but profound ontological and methodological challenges for
various scientist. General relativity describes gravitation more or less as the curvature of space-time by
matter or energy. Therefore, a quantisation of gravity theoretically implies some sort of quantisation
of space-time geometry too. Whatever the final outcome, the above approach to the wave equation of
the gravitational field does not only bring general relativity in line with quantum theory but is expected
to be able to provide a satisfactory description of the micro-structure of space-time, especially at the
so-called Planck scale. As can be seen, the gravitational field itself is also quantised. As always, one
might legitimately remark that what constitutes a possible way out to one author might not qualify as
such to another especially if theories break down at certain circumstances.

3.12. Measurement of space-time dimensions

One aspect of the self-organization of objective reality seems to be also the transition into an objec-
tive reality of higher dimension. Whether this process is irreversible may be an open question for the
present. However, the question may very well be asked whether our objective reality is already part of
another, higher dimensional objective reality? Moreover, it would be desirable if this can be measured
or verified experimentally somehow. Measurements of Laue’s scalar (i. e. by wave-length et cetera
(see equation 331 )) can be of help. In general, under conditions of 4 space-time dimensions, it is((

4×2×π × γ ×T
c4 ×4

)
×gµν

)
=

((
4×2×π × γ ×T

c4 ×D

)
×gµν

)
(362)

or

D×
((

4×2×π × γ ×T
c4 ×4

)
×gµν

)
=

((
4×2×π × γ ×T

c4

)
×gµν

)
(363)

Simplifying, it is

D =
D Space time dimension
4 Space time dimension

=

((
4×2×π × γ ×T

c4

)
×gµν

)
((

2×π × γ ×T
c4

)
×gµν

) =

((
4×2×π × γ ×T

c4

))
((

2×π × γ ×T
c4

)) (364)

The determination of the dimension space-time by an measurement is given as

D =
D Space time dimension
4 Space time dimension

=

((
4×2×π × γ ×T

c4

))
((

2×π × γ ×T
c4

)) =
4×π × γ ×T D Dimension

π × γ ×T 4 dimension
(365)

Under certain conditions which we do not wish to go into in detail at this point, equation 365 simplifies
to

D =
4×T D Dimension

T 4 dimension
(366)
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4. Discussion

Today, a lot of cosmologists and theoretical physicists endorse the view that our universe was born
about 13.7 billion years ago in a massive expansion, the so called big bang. The notion ‘big bang ’(see
also Lemaı̂tre, 1931a,b) itself has been coined on 28 March 1949 by Fred Hoyle(see also Kragh, 2013)
during his talk on the British Broadcasting Corporation (BBC). However, objective reality itself is our
‘ultimate’truthmaker and can teach us very much about the beginning of our world. The beginning
of our world, as the foundation on which everything other is built, appears to be determined by laws
of nature which are worth to be examined from a higher point of view before anything else. At the
beginning of our world, another end is probably running on empty and we have nothing else but the
beginning itself. However, it remains to be seen what and how such a beginning could be. With what
should the beginning of our world be made, what is there before us? Is it possible at all for our world
to begin, it doesn’t matter either our world is or it is not. In so far as our world is, our world is not just
beginning, the world is already. In so far as our world is not, why should this world begin, how could
this world begin? Thus, if no presupposition is to be made then the only determination of the beginning
of our world as such is at the end to be the beginning of our world. In the same line, a beginning of
our world may not presuppose anything. In point of fact, is there something like an absolute beginning
at all, is there something which has been existed prior to the beginning of our world? Do we have
to consider whether a preliminary labour need to be carried out before the beginning of our world?
We should not let up at this point until the beginning of our world has been firmly established. A
reader who is concerned with the origin or the beginning of our world will have to consider at least the
possibility of a creation or of a beginning of our world out of nothing, a creatio ex nihilio (see also
Aquinas, 1964), however nothing itself might be determined or scientifically defined.

Table 10. Without nothingness, no beginning of world?

Beginning Of World
YES NO

Nothingness YES 1 1 1
NO 0 1 1

1 1 1

In this context, it is necessary to point out, that nothing, even understood as an absence of some-
thing, exists. However, such an attitude is of course not unconditionally accepted by all. As an ex-
ample, Guthrie himself is firmly convinced that nothing cannot be (see Guthrie, 1965, p. 104). The
question whether this world had a beginning (in nothing, in time, in ...) still remains unanswered or
was it more the either way? Has this world ‘produced’and is this world still ‘producing’nothingness?
In particular, has this world had no beginning in time, in nothing et cetera with the consequence that
this world always has existed and this world always will exist? Are nothingness and the beginning of
our world independent of each other ( see table 10)? In point of fact, are questions like these beyond
any human experience? In particular, is the question of our world’s beginning more a matter of faith
than of demonstration or science?

The relationship without nothingness no beginning of our world is logically equivalent with the
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relationship if no absence of nothingness then no absence of the beginning of our world. However,
this logical necessity need not imply that a beginning of our world is successful too. There may have
existed a lot of ‘trials’until the beginning of our world was successful. However, what is nothingness,
what is the structure of nothingness, where does it itself comes from? May all this not also be a little
different and more likely the following way: if nothingness then beginning of our world?

Table 11. If nothingness, then beginning of world?

Beginning Of World
YES NO

Nothingness YES 1 0 1
NO 1 1 1

1 1 1

Again, does nothingness exist and what are the properties of nothingness? But by the same reason-
ing, is there only total emptiness or total nothingness or are there small pockets of emptiness or small
pockets of nothingness or both or none? In order not to expose ourselves to the danger to favour a
one-sided point of view (creatio ex nihilio), it is appropriate to consider whether the determination of
the beginning of our world is comparable to a coin with two sides - a beginning of our world out of
itself which is necessary for itself and equally a beginning of our world which is a condition for its
own further self-organised and self-determined development. (see also Barukčić, 2007) It is hardly
surprising, therefore, that in the first view of the nature of the beginning of our world, the beginning of
our world out of itself which is necessary for itself appears to be something what is absolutely simple,
that is, something what is the most general. In other words, it is very likely that the beginning of our
world cannot be made with anything containing a concrete relation within itself or anything concrete
because such a concrete something need not to begin, such a concrete something is already existing.
As a logical consequence, it is difficult to consider that a concrete something itself has been that from
which the movement of our world started because the determinations contained in something concrete
have already developed somehow. Thus, the developed and concrete something would exist before it
started to exist. Consequently, anything which is in its own self a first and an other too implies equally
that it has developed somehow, an advance from one to another has already been made. A concrete one
has become somehow the concrete one that it is, some progress has already been made. In so far, that
which constitutes the beginning of our world, the beginning itself, is to be taken as something simple
and unfilled. If that which forms the beginning of our world would be something determined within
itself, then this something that is determined within itself need likewise to be something otherwise
concrete which the beginning of our world cannot be.

To address the question of emptiness, nothingness et cetera again and from a non-mathematical
point of view, even after a removal of everything still remains something which is not constituted or
determined by anything concrete, an objective reality determined by neither curvature nor momentum,
the emptiness as such, the empty negative, the infinitely flat, whatever the structure of the same may
be, what ever its properties. Are we able to identify those outstanding properties of an objective reality
which is determined by neither curvature nor momentum? We find at this point no persuasive logical
reason which would counter the assumption that in emptiness simply as such, in the empty negative
which is necessary for itself, the beginning of our world can be found. The insight, that in the empty
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negative the beginning of our world can be found, is itself so simple that a beginning of our world as
such out of the empty negative requires further introduction. In order not to be exposed to the danger of
pure speculation, can there be any beginning of our world from the point of view of the general theory
of relativity in nothingness, in the emptiness, in an empty negative? As found before, it is

dµν =

((
R
D

)
×gµν

)
−
((

R
2

)
×gµν

)
−
((

4×2×π × γ ×T
c4 ×D

)
×gµν

)
=−

(
Λ×gµν

)
(367)

Especially under conditions of D=2 space-time dimensions we should also consider the possibility
that

dµν =

((
R
2

)
×gµν

)
−
((

R
2

)
×gµν

)
−
((

4×2×π × γ ×T
c4 ×2

)
×gµν

)
=−

(
Λ×gµν

)
(368)

In the final result, it is

dµν = 0−
((

4×π × γ ×T
c4

)
×gµν

)
=−

(
Λ×gµν

)
(369)

In other words, zero is determined as the unity and the struggle between a positive and a negative as

0 =+

((
4×π × γ ×T

c4

)
×gµν

)
−
(
Λ×gµν

)
(370)

Historically (see Kaplan, 1999), many times zero and nothing have been treated as being identical.
Nichomachus of Gerasa is writing: “... the sum of nothing added to nothing ... makes nothing.”
(see Nicomachus, 1926, pp. 237/238). However, differences (see Contini-Morava, 2006) between
zero and nothing (latin nihilio) have also been discussed too. We should not forget at this passage
that zero itself is full of life. Thus far, let us not beat around the bush unnecessarily and put it in a
nutshell. After all these arguments presented, an infinitely small and dense point as the beginning of
our world seems to be highly improbable. In order to ensure the beginning of the world it is necessary
for the beginning itself to escape from the state of symmetry (see Anderson, 1972), to escape from
zero, the black hole of mathematics. The question that might rack our brains is, can something
and how can something escape from zero (Barukčić, 2015a) ? However, with all back and forth we
have to demonstrate a certain amount of courage and to venture out from safe theoretical cover in
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order to ask ourselves at this point whether we are forbidden to ask the question about the theoretical
possibility of the existence of an objective reality below D=2 space-time dimensions? What could
such a bizarre objective reality look like in detail? Maybe Einstein’s field equations can bring some
light into this world of espistemiological darkness. Theoretically, it is possible that there are conditions
where even the Ricci scalar R is equal to R = 0. Under these circumstances, the Einstein field equations
becomes

((
0
D

)
×gµν

)
−
((

0
2

)
×gµν

)
+
(
Λ×gµν

)
=+

((
4×2×π × γ ×T

c4 ×D

)
×gµν

)
(371)

Conditions of objective reality where R, the Ricci scalar, is equal to R = 0 are describing equally
a region of objective reality in which the Einstein tensor Gµν vanishes. In general relativity, such
conditions are describing a vacuum solution of the Einstein field equations too. However, vacuum so-
lutions are distinct from the lambdavacuum solutions. In lambdavacuum solutions the only term in the
stress–energy tensor is the cosmological constant term. An equivalent formulation of lambdavacuum
solutions in terms of the Einstein tensor is Gµν = −

(
Λ×gµν

)
. As next, equation 371 simplifies. It

is

+
(
Λ×gµν

)
=+

((
4×2×π × γ ×T

c4 ×D

)
×gµν

)
(372)

Nonetheless, in zero as the unity and the non-ending struggle between a positive and a negative, the
positive and the negative are united too. It is an objective reality where the one is equal to its own
other.

0 =+

((
4×2×π × γ ×T

c4 ×D

)
×gµν

)
−
(
Λ×gµν

)
(373)

In the end, even if we have reason to acknowledge with regard to this matter for the present to each
observant reader his own point of view, the emptiness in which the beginning of our world can be
found is itself full of life. However such an emptiness itself need to be an emptiness in which an
advance from one to another has yet not been made, it is an abstract and not determinate emptiness. In
point of fact, such an empty negative, the emptiness as such, is equally a self-related negativity, it is
the negative of itself in its own self, it has a relation to the other of itself and is suffering and thirsty
for the other of itself. From another point of view, only in what is simple there is nothing more than
the pure beginning, only in such a simple, in emptiness as such, no advance yet has been made from
one to an other. It might be reasonably assumed that the beginning of our world began with the
beginning itself. Unfortunately, it appears to be that there is little to say in this respect since there
were no eye-witnesses and there is no direct evidence in this regard. But even if epistemic self-doubt is
not all the time so evidently justified, an important alternative which remains is the task of fact-finding
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as we descend from the known to the unknown. Yet it remains central and helpful to consider that
it is very difficult to extract any further determination of any beginning of our world from the fact that
it is the beginning of our world as such. At first sight, there isn’t anything else present, any content
which could be used to make the beginning of our world more determinate. It can be noted, however,
that the beginning of our world in emptiness, in nothing else but the empty negative, is equally in its
first manifestation in fanatical hostility towards an end, it is fearful of being lost in an end, it is fearful
of being captured for ever by an end. The beginning of our world is equally within itself the end of an
end, the end of an end in which the end is also the begin and the begin is also the end, the beginning
of our world is thus the beginning of everything. In so far, that from which a movement began has
united with itself, in the beginning an end ends and equally in such an end the beginning begins. The
beginning of our world on its own accord determines thus itself as the other of itself, the beginning
is thus the local hidden variable of an end, it is a simplicity into which an end has withdrawn. The
beginning of our world contains as such within itself thus the beginning of any further self-governed
advance and development. In its last manifestation, the beginning of our world seems to be equally the
foundation on which everything other is built, it is the simplest, the simple itself, quite general, without
any content and still undeveloped. The beginning of our world is the foundation which is present and
preserved throughout the entire subsequent development, remaining completely immanent in its further
determinations. That which forms the starting point of the development of our world remains at the
base of all that follows and does not vanish from it. Enclosed in the beginning of our world is thus the
entire development that follows. The further necessary development of our world started right from
the beginning itself. The beginning of our world in its own necessary development brings with its own
self the demand of further development. The beginning of our world starts from itself and advances to
the other of itself, it is a movement through which the latter at the end returns to the first. The progress
that follows is more or less only a further determination of the beginning of our world, every further
progress is equally a fresh beginning too, it is the sublation of the very first beginning of our world.
In so far, while getting further away from the beginning of our world, the development of our world is
equally getting back nearer to it. Consequently, after the contradictions contained in the beginning of
our world have been developed, the final result is the relationship which formed the beginning as such,
is the infinite progress, the same contradiction with which our world began. However it may be, once
the beginning of our world has inwardly reconstituted itself, all attempts to preserve the end are utterly
in vain. In so far, the beginning as such remains to some extent a matter of indifference. Contrary to
all, both sides of the beginning of our world constitutes the beginning of our world. The beginning of
our world has thus its own result, its own negation in itself and passes thus into a higher space-time
dimension, into a new unity and struggle between energy and time.
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5. Conclusion

The big bang as an explanation of the beginning of our world is not the only conceivable logical
possibility to explain the beginning of our world. The beginning of our world out of the empty negative,
out of

dµν =−
(
Λ×gµν

)
(374)

is theoretically possible too.
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Erratum

Unfortunately, some misprints appeared in the previous publications, especially in the section of definitions. Some of the misprints
have been brought up to date in this publication as far as possible.

Erratum :

Misprints (version 7), Theorem 9,

error (version 7): The table 5 (see equation 5, p. 25)

With all intent, recognised misprints had to be reduced and additional and new theorems had to be provided.

Today (October 16, 2022), it seems hopeless. The more often this article is read, the more misprints one notices. Various misprints
where identified and had to be reduced.

Today (October 18, 2022), with each day the hope fades more and more away that an end of the theorems is in sight.

Private note

The definition section of a paper need not and does not necessarily contain new scientific aspects. Above all, it also serves to better

understand a scientific publication, to follow every step of the arguments of an author and to explain in greater details the fundamentals

on which a publication is based. Therefore, there is no objective need to force authors to reinvent a scientific wheel once and again unless

such a need appears obviously factually necessary. The effort to write about a certain subject in an original way in multiple publications

does not exclude the necessity simply to cut and paste from an earlier work, and has nothing to do with self-plagiarism. However, such

an attitude cannot simply be transferred to the sections’ introduction, results, discussion and conclusions et cetera.
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Ilija Barukčić. Anti γ-negation of newton’s constant γ . Causation, 1(5):5–13, 2006.
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Barukčić, Ilija. Wave particle duality. Causation, 17(11):5–25, November 2022. doi: 10.5281/zenodo.7303952. URL https://doi.
org/10.5281/zenodo.7303952. Zenodo Version 2.

Arthur L. Besse. Einstein manifolds and topology. In Arthur L. Besse, editor, Einstein Manifolds, Ergebnisse der Mathematik und ihrer
Grenzgebiete, chapter 6, pages 154–176. Springer-Verlag, 1987. doi: https://doi.org/10.1007/978-3-540-74311-8.
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Albert Einstein and A. D. Fokker. Die Nordströmsche Gravitationstheorie vom Standpunkt des absoluten Differentialkalküls. An-
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Tomáš Málek. General Relativity in Higher Dimensions. PhD thesis, Institute of Theoretical Physics. Faculty of Mathematics and
Physics. Charles University, Prague, 2012. URL https://arxiv.org/pdf/1204.0291.pdf.
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Supplementary Material

The supplementary material typically includes material that does not really form part of the main
article. However, the supplementary material is of use in order to better understand the main article and
includes sometimes additional data such as computer code, large tables, additional figures, appendices
et cetera as necessary.
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5.1. Tensor Algebra

Geometry can be traced back to the first trials of systematic logical thinking of humans. Still, the
nature of the relation between the definitions, axioms, theorems, and proofs in a system of geometry
and objective reality has to be considered in detail. Tensors are one mathematical approach to geometry.
The tensor (see also Voigt, 1898, p. 20) calculus has been developed in some greater detail by Ricci-
Curbastro (see Ricci-Curbastro and Levi-Civita, 1900) and his student Levi-Civita on the basis of
earlier work of authors like Riemann, Christoffel, Bianchi and others. Especially, Einstein’s general
theory of relativity is expressed by the mathematical technology of tensors.

5.1.1. Tensor addition

Definition 5.1 (Tensor addition).

The sum of two second rank co-variant tensors has the properties of associativity and commutativity
and is defined as

Cµν ≡ Aµν +Bµν

≡ Bµν +Aµν

(375)

The sum of two second rank contra-variant tensors has the properties of associativity and commutativ-
ity and is defined as

Cµν ≡ Aµν +Bµν

≡ Bµν +Aµν
(376)

The sum of two second rank mixed tensors has the properties of associativity and commutativity and
is defined as

Cµ
ν ≡ Aµ

ν +Bµ
ν

≡ Bµ
ν +Aµ

ν
(377)

5.1.2. Anti tensor I

Definition 5.2 (Anti tensor I).

Let aµν denote a co-variant (lower index) second-rank tensor. Let bµν , cµν et cetera denote other
co-variant second-rank tensors. Let Eµν denote the sum of these co-variant second-rank tensors. Let
the relationship aµν + bµν + cµν + ... ≡ Eµν be given. A co-variant second-rank anti tensor (see
also Barukčić, 2020d) of a tensor aµν denoted in general as aµν is defined

aµν ≡ Eµν −aµν

≡ bµν + cµν + ...
(378)
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5.1.3. Anti tensor II

Definition 5.3 (Anti tensor II).

Let aµν denote a contra-variant (upper index) second-rank tensor. Let bµν , cµν et cetera denote
other contra-variant (upper index) second-rank tensors. Let Eµν denote the sum of these contra-variant
(upper index) second-rank tensors. Let the relationship aµν + bµν + cµν + ... ≡ Eµν be given. A
co-variant second-rank anti tensor of a tensor aµν denoted in general as aµν is defined

aµν ≡ Eµν −aµν

≡ bµν + cµν + ...
(379)

5.1.4. Anti tensor III

Definition 5.4 (Anti tensor III).

Let aµ
ν denote a mixed second-rank tensor. Let bµ

ν , cµ
ν et cetera denote other mixed second-rank

tensors. Let Eµ
ν denote the sum of these mixed second-rank tensors. Let the relationship aµ

ν + bµ
ν

+ cµ
ν + ... ≡ Eµ

ν be given. A mixed second-rank anti tensor of a tensor aµ
ν denoted in general as

aµ
ν is defined

aµ
ν ≡ Eµ

ν −aµ
ν

≡ bµ
ν + cµ

ν + ...
(380)

5.1.5. Tensor subtraction

Definition 5.5 (Tensor subtraction).

The subtraction of two second rank co-variant tensors is defined as

Cµν ≡ Aµν −Bµν (381)

The subtraction of two second rank contra-variant tensors is defined as

Cµν ≡ Aµν −Bµν (382)

The subtraction of two second rank mixed tensors is defined as

Cµ
ν ≡ Aµ

ν −Bµ
ν (383)
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5.1.6. Symmetric and anti symmetric tensors

Definition 5.6 (Symmetric and anti symmetric tensors).

Symmetric tensors of rank 2 may represent many physical properties objective reality. A co-variant
second-rank tensor aµν is symmetric if

aµν ≡ aνµ (384)

However, there are circumstances, where a tensor is anti-symmetric. A co-variant second-rank tensor
aµν is anti-symmetric if

aµν ≡−aνµ (385)

Thus far, there are circumstances were an anti-tensor is identical with an anti-symmetrical tensor.

aµν ≡ Eµν −bµν + ...≡ Eµν −aµν ≡−aνµ (386)

Under conditions where Eµν = 0, an anti-tensor is identical with an anti-symmetrical tensor or it is

−aµν ≡−aνµ (387)

However, an anti-tensor is not identical with an anti-symmetrical tensor as such.

Definition 5.7 (Multiplication of tensors). Let gkl or gµν denote a 2-index metric tensors. Let gklµν

denote a 4-index metric tensors. Let gklµν . . . denote a n-th index metric tensor. The n-index metric
tensor gklµν . . . itself is a covariant symmetric tensor and equally an example of a tensor field. If we
pause for a moment today and rely on Einstein’s “Die Grundlage der allgemeinen Relativitätstheorie
” (see Einstein, 1916, p. 784), it is

gklµν ≡ gklgµν (388)

and in the case of n-th rank order
gklµν . . . ≡ gklgµν . . . (389)

The mixed and contra-variant cases are similar. Riemann defined the distance between two neigh-
bouring points more or less by a quadratic differential form. The geometry based on the positive
definite Riemannian metric tensor is called the Riemannian geometry. However, tensor calculus as a
generalization of classical linear algebra should assure that formulae are invariant under coordinate
transformations and that the same are independent of any kind of the rank order of the metric tensor
chosen. Albert Einstein (see Einstein, 1916) presented some rules of tensor algebra in his important
publication issued in the year 1916.

T a b c ≡ Aa bBc (390)

(see Einstein, 1916, p. 784)

Furthermore, it is
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T a b c d ≡ Aa bBc d (391)

(see Einstein, 1916, p. 784)

and equally

T
a b
c d ≡ Aa bBc d (392)

(see Einstein, 1916, p. 784)

A covariant tensor of the second rank type is defined as

T c d ≡ AcBd (393)

(see Einstein, 1916, p. 782)

The mathematics of tensors is particularly useful for Einstein’s general theory of relativity. In a D-
dimensional space a tensor of rank n has D n components. A contravariant tensor of the second rank
type is defined as

T c d ≡ AcBd (394)

(see Einstein, 1916, p. 782)

A mixed tensor of the second rank type is defined by Einstein as follows.

T
d

c ≡ AcBd (395)

(see Einstein, 1916, p. 783)

A scalar F, or a tensor of zero rank, is given by the relationship

F ≡ F
b
b ≡ F

a b
a b ≡ Fa bFa b (396)

(see Einstein, 1916, p. 785)
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This relationship (see equation 396, p. 93) is of importance for the fundamental invariants of the
electromagnetic field too. The covariant and contravariant products of two rank 2 tensors give the
same value and result in a scalar. In general, scalar products are operations on two tensors of the same
rank that yield a scalar.
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5.1.7. The metric tensor gµν and the inverse metric tensor gµν

General relativity is a theory of the geometrical properties of space-time to, while the metric tensor
gµν itself is of fundamental importance for general relativity. The metric tensor gµν is something
like the generalization of the Pythagorean theorem. Thus far, it does not appear to be necessary to
restrict the validity of the Pythagorean theorem only to certain situations. The question is justified why
the Riemannian geometry should be oppressed by the quadratic restriction. In this context, Finsler
geometry, named after Paul Finsler (1894 - 1970) who studied it in his doctoral thesis (see Finsler,
1918) in 1918, appears to be a kind of metric generalization of Riemannian geometry without the
quadratic restriction and justifies the attempt to systematize and to extend the possibilities of general
relativity.

Definition 5.8 (Kronecker delta).

The Kronecker delta (see Zehfuss, 1858) is a so called invariant tensor and has been invented by
Leopold Kronecker (1823-1891) in 1868 (see Kronecker, 1868). Meanwhile, Kronecker delta appears
in many areas of physics, mathematics, and engineering and is defined as

gµρ ×gνρ ≡ gµ
ν ≡ δ µ

ν (397)

Technically, the Kronecker delta itself is a mixed second-rank tensor.

Definition 5.9 (The metric tensor gµν and the inverse metric tensor gµν ).

The distance between any two points in a given space can be described geometrically by a general-
ized Pythagorean theorem, the metric tensor gµν . Sharing Einstein’s point of view, it is in general

gµν ×gµν ≡ δ ν
ν ≡ D (398)

where D might denote the number of space-time dimensions. The quantity

δ i
i ≡ δ 1

1 +δ 2
2 + ...+δ D

D ≡ D (399)

is an invariant. In other words, an index which is repeated inside an expression means summation over
the repeated index (Einstein summation convention). Vectors and scalars are invariant under coordinate
transformations. In point of fact, Einstein field equations (Einstein, 1915, 1916, 1917, 1935, Einstein
and Sitter, 1932) were initially formulated by Einstein himself in the context of a four-dimensional
theory even though Einstein field equations need not to break down under conditions of D space-time
dimensions (see Stephani, 2003). Nonetheless, based on Einstein’s statement (Einstein, 1916, p.
796), one gets (see also Einstein, 1923b, p. 91)

gµν ×gµν ≡ δ ν
ν ≡ D ≡+4 (400)

or
1

gµν ×gµν
≡ 1

4
(401)
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where gµν is the matrix inverse of the metric tensor gµν . The inverse metric tensor or the metric
tensor, which is always symmetric, allow tensors to be transformed into each other and are used to
lower and raise indices. Einstein’s pointed out that

“... in the general theory of relativity ... must be ... the tensor gµν of the gravitational potential”
(Einstein, 1923b, p. 88)

Definition 5.10 (The metric tensor gµν decomposed). The fundamental difference between the metric
tensors of the four basic fields of nature, denoted as aµν , bµν , cµν and dµν , finds its complete expression
in equation 402 as

agµν + bgµν + cgµν + dgµν ≡ gµν (402)

where agµν is the metric tensor of the ordinary matter, bgµν is the metric tensor of electromagnetism,
cgµν is the metric tensor of the field cµν , dgµν is the metric tensor of the field dµν and gµν is the metric
tensor of Einstein’s general theory of relativity. We distinguish here between the four basic field of
nature, as follows. Details are illustrated by table 12.

Table 12. The metric field decomposed

Curvature
YES NO

Momentum YES (agµν ) (bgµν ) (Egµν )
NO (dgµν ) (dgµν ) (Egµν )

(Ggµν ) (Ggµν ) (gµν )

As an example, it is
R
D
× agµν = a×gµν (403)

and

agµν =
a×D

R
×gµν (404)

We obtain (
R
D
× agµν

)
︸             ︷︷             ︸

aµν

+

(
R
D
× bgµν

)
︸             ︷︷             ︸

bµν

+

(
R
D
× cgµν

)
︸            ︷︷            ︸

cµν

+

(
R
D
× dgµν

)
︸             ︷︷             ︸

dµν

=
R
D
×gµν = Rµν (405)

In this publication, let aµν , bµν , cµν and dµν denote the covariant second rank tensors of the four
basic fields of nature were aµν ≡ a×gµν is the stress-energy tensor of ordinary matter, bµν ≡ b×gµν ,
cµν ≡ c×gµν and dµν ≡ d ×gµν et cetera.
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Definition 5.11 (The metric tensor gwgµν of gravitational waves). Let gµν denote the metric tensor
of Einstein’s general theory of relativity. Let gwgµν denote the metric tensor of gravitational waves of
Einstein’s general theory of relativity. Let gwgµν denote the metric tensor of anti-gravitational waves
of Einstein’s general theory of relativity. In general, there are circumstances where

Egµν ≡ gwgµν + gwgµν (406)

Definition 5.12 (The metric tensor ηµν of special relativity). There is a fundamental difference
between Einstein’s special theory of relativity and Einstein’s general theory of relativity regarding the
metric tensor. Let ηµν denote the metric tensor of Einstein’s special theory of relativity. In general,

depending upon circumstances, it is ηµν =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 +1

 (see Einstein, 1916, p. 778). Let

ηµν denote the anti-metric tensor of Einstein’s special theory of relativity. Let gµν denote the metric
tensor of Einstein’s general theory of relativity. In general, it is (see equation 378)

gµν ≡ ηµν +ηµν (407)

We can imagine that there may be circumstances where dgµν ≡ gwgµν ≡ ηµν applies. Whether this
will be generally valid might be the subject of further investigation. The n-th index relationship follows
(see equation 378) as

gklµν . . . ≡ ηklµν . . . +ηklµν . . . (408)

Einstein’s field equations becomes((
R
D
− R

2
+Λ

)
×ηµν

)
︸                             ︷︷                             ︸

special relativity metric

+

((
R
D
− R

2
+Λ

)
×ηµν

)
︸                             ︷︷                             ︸

disturbances or ripples in the curvatureo f spacetime

≡
(

4×2×π × γ ×T
c4 ×D

)
×gµν︸                                 ︷︷                                 ︸

stress energy−momentum tensor
(409)

Under conditions of D=2 space-time dimensions, the gravitational waves are related to Λ by the rela-
tionship

Λ×ηµν (410)

Definition 5.13 (Index raising). According to Einstein (see also Einstein, 1916, p. 790), it is

Fµν ≡ gµαgνβ Fαβ (411)

and equally
Fµν ≡ gµαgνβ Fαβ (412)

In other (Kay, 1988) words (see Einstein, 1916, p. 790), an order-2 tensor, twice multiplied by the
contra-variant metric tensor and contracted (Einstein, 1916, p. 785) in different indices, raises each
index. It is

F( 1 3
µ c ) ≡ g(

1 2
µ ν )×g(

3 4
c d )×F( ν d

2 4 )
(413)
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or more professionally

Fµ c ≡ gµν ×gcd ×Fν d (414)

Following Einstein, it is gµν × gµν ≡ δ µ
µ (Einstein, 1916, p. 796). Furthermore, in conjunction

with another view of Einstein (see Einstein, 1916, p. 785), it is

F ≡ Fµν
µν ≡ Fµν ×Fµν (415)
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5.2. Extended tensor algebra

In the following, for the sake of better understanding, we consider tensors of order two. As is
known, the components of a tensor of order two can be displayed in 4 × 4 matrix form.

5.2.1. Zero tensor

Definition 5.14 (Zero tensor).

The second-rank co-variant zero tensor is defined as

0µν ≡


000 001 002 003
010 011 012 013
020 021 022 023
030 031 032 033


︸                           ︷︷                           ︸

0µν tensor

(416)

This definition is also valid for contra-variant or mixed tensors too.

5.2.2. The negation of one

Definition 5.15 (The negation of one).

The negation of one, denoted as ¬(1), is defined by division as

¬(1) = 0
1

(417)

In general, it is

¬(1)×1 =+1−1 =
0
1
×1 =

1
1
×0 = 0 (418)

The negation of one, denoted as ¬, is defined by subtraction as

¬= 1− (419)

In general, it is
¬1 = 1−1 = 0 (420)

5.2.3. Unity tensor

Definition 5.16 (Unity tensor).
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The second-rank co-variant unity tensor is defined as

1µν ≡


100 101 102 103
110 111 112 113
120 121 122 123
130 131 132 133


︸                           ︷︷                           ︸

1µν tensor

(421)

This definition is also valid for contra-variant or mixed tensors too.

5.2.4. The negation of zero

Definition 5.17 (The negation of zero).

The negation of zero, denoted as ¬(0), is defined by division as

¬(0) = 0 =
1
0

(422)

In general, it is

¬(0)×0 = 0×0 =
1
0
×0 =

0
0
= 1 (423)

The negation of zero, denoted as ¬(0) or as 0, is defined by subtraction as

¬= 1− (424)

In general, it is
¬0 = 0 = 1−0 = 1 (425)

5.2.5. The tensor of the number 2

Definition 5.18 (The tensor of the number 2).

The second-rank co-variant tensor of the number 2 is defined as

2µν ≡


200 201 202 203
210 211 212 213
220 221 222 223
230 231 232 233


︸                           ︷︷                           ︸

2µν tensor

(426)

This definition is also valid for contra-variant or mixed tensors an other numbers too. Whether it makes
sense to define numbers or scalars et cetera in the form of a tensor is worth being discussed. However,
such an approach has various advantages too.
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5.2.6. Speed of the light tensor

Definition 5.19 (Speed of the light tensor).

Scientists and thinkers have been fascinated by the speed of light since ever. Aristotle (384-322 BCE)
himself has been of the opinion that the speed of light was infinite. Let c denote the speed of the light
in vacuum. The second-rank co-variant tensor of speed of the light is defined as

cµν ≡


c00 c01 c02 c03
c10 c11 c12 c13
c20 c21 c22 c23
c30 c31 c32 c33


︸                          ︷︷                          ︸

cµν tensor

(427)

5.2.7. Archimedes’ constant tensor

Definition 5.20 (Archimedes’ constant tensor).

The second-rank co-variant tensor of the Archimedes of Syracuse (c. 287 – c. 212 B. C. E.) constant
π is defined as

πµν ≡


π00 π01 π02 π03
π10 π11 π12 π13
π20 π21 π22 π23
π30 π31 π32 π33


︸                            ︷︷                            ︸

πµν tensor

(428)

This definition is also valid for contra-variant or mixed tensors too.

5.2.8. Newton’s constant tensor

Definition 5.21 (Newton’s constant tensor).

The second-rank co-variant tensor of the Newton’s constant is defined, as

γµν ≡


γ00 γ01 γ02 γ03
γ10 γ11 γ12 γ13
γ20 γ21 γ22 γ23
γ30 γ31 γ32 γ33


︸                           ︷︷                           ︸

γµν tensor

(429)

This definition is also valid for contra-variant or mixed tensors too.
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5.2.9. Planck’s constant tensor

Definition 5.22 (Planck’s constant tensor).

Plato (424/423 – 348/347 BCE), a Greek philosopher born in Athens, defined a circle as follows

“Rund ist doch das, dessen Enden überall gleich weit von der Mitte entfernt sind? ”

(see also Plato, 1910, p. 26)

Max Karl Ernst Ludwig Planck (1858-1947) quantized the energy REt as

RE t ≡ n×h×R f t (430)

where h is Planck’s constant (Planck, 1901), Rft is the frequency and n is an integer number. In the
following, Paul Adrien Maurice Dirac (1902-1984) defined the so-called Dirac’s constant ℏ (Dirac,
1926) as

h ≡ 2×π ×ℏ
≡ π × (2×ℏ)
≡ π × s

(431)

Figure 5 might illustrate these basic relationships.

© 2022, Ilija Barukčić, Jever, Germany. All rights reserved.

2 𝜋 ℎ = 𝑙 = ℎ

h

s = 2✕h

A=(𝜋𝑠!)/4

Figure 5. Planck’s constant h, quantum loop and string theory.
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A few thoughts - which are necessarily first thoughts - might consider circumstances where h can be
regarded as a loop, denoted as l, of quantum loop theory, while s is treated as a string of string theory.
Under these conditions, it is

l ≡ π × s (432)

or
π ≡ l

s
(433)

Equation 433 implies due to our experience that π can hardly be treated as a constant. In this context,
the second-rank co-variant tensor of Planck’s constant h (Planck, 1901) is defined, as

hµν ≡


h00 h01 h02 h03
h10 h11 h12 h13
h20 h21 h22 h23
h30 h31 h32 h33


︸                           ︷︷                           ︸

hµν tensor

(434)

This definition is also valid for contra-variant or mixed tensors too.

5.2.10. Dirac’s constant tensor

Definition 5.23 (Dirac’s constant tensor).

The second-rank co-variant tensor of Dirac’s constant ℏ is defined as

ℏµν ≡


ℏ00 ℏ01 ℏ02 ℏ03
ℏ10 ℏ11 ℏ12 ℏ13
ℏ20 ℏ21 ℏ22 ℏ23
ℏ30 ℏ31 ℏ32 ℏ33


︸                           ︷︷                           ︸

ℏµν tensor

(435)

This definition is also valid for contra-variant or mixed tensors too.

5.2.11. The commutative multiplication of tensors

Definition 5.24 (The commutative multiplication of tensors).

Multiplication is something which is equivalent to a repeated addition. Addition itself has the proper-
ties of associativity and commutativity. The question is justified whether there might exist something
like a commutative multiplication of tensors. Let Uµν denote a second-rank tensor. Let Wµν denote
another second-rank tensor. The commutative multiplication of two second-rank tensors is defined as
an entry wise multiplication of both tensors. It is,

U µν ∩W µν ≡ X µν (436)
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where the sign ∩ denotes a commutative multiplication of tensors of the same rank. The commutative
multiplication of two tensors of the same rank is commutative, associative and distributive.

Example.

Example of an entrywise multiplication of two tensors of the same rank.
u00 u01 u02 u03

u10 u11 u12 u13

u20 u21 u22 u23

u30 u31 u32 u33


︸                            ︷︷                            ︸

Uµν tensor

∩


w00 w01 w02 w03

w10 w11 w12 w13

w20 w21 w22 w23

w30 w31 w32 w33


︸                               ︷︷                               ︸

Wµν tensor

=


(u00 ×w00) (u01 ×w01) (u02 ×w02) (u03 ×w03)

(u10 ×w10) (u11 ×w11) (u12 ×w12) (u13 ×w13)

(u20 ×w20) (u21 ×w21) (u22 ×w22) (u23 ×w23)

(u30 ×w30) (u31 ×w31) (u32 ×w32) (u33 ×w33)


︸                                                                          ︷︷                                                                          ︸

Xµν

(437)

Jacques Salomon Hadamard (1865-1963), a French mathematician, defined a similar operation of two
matrices of the same dimension i× j (see also Hadamard, 1893) which is commutative, associative
and distributive. The Hadamard product (also known as the Issai Schur (see also Schur, 1911, p. 14)
(1875 – 1941) product (see also Davis, 1962) or the point wise product) is of use for a commutative
matrix multiplication and is defined something as

(u◦w)ij ≡ uijwij (438)

where the sign ◦ denotes an entry wise matrix multiplication.

5.2.12. The tensor double dot product on the closest indices

Definition 5.25 (The tensor double dot product on the closest indices).

Two tensors can be contracted over the first two indices of the second tensor or over the last two
indices of the first tensor (double contraction). As is known, a double dot product between two tensors
of orders m and n will result in a tensor of order (m + n - 4). Let uµν and wµν denote two second-rank
tensors. Let : denote the contraction of two tensors uµν and wµν on the closest indices, then

u : w = uµνwνµ (439)

5.2.13. The tensor double dot product on the non-closest indices

Definition 5.26 (The tensor double dot product on the non-closest indices).
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Let uµν and wµν denote two second-rank tensors. Let : denote the contraction of two tensors uµν and
wµν on the non-closest indices, then

u:w = uµνwµν (440)

Especially under conditions where both second-rank tensors are symmetric, both definitions of the
tensor double dot product coincide but not necessarily in general.

5.2.14. The division of tensors

Definition 5.27 (The division of tensors).

Division is something which is related to multiplication. Let aµν denote a second-rank tensor. Let bµν

denote another second-rank tensor. Let Uµν denote another second-rank co-variant tensor. In general,
let it be that

aµν +bµν ≡U µν (441)

The probability tensor of a tensor aµν , denoted as p(aµν ), is calculated entry wise as follows.

p(aµν)≡


a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

/


U00 U01 U02 U03

U10 U11 U12 U13

U20 U21 U22 U23

U30 U31 U32 U33

≡



a00

U00

a01

U01

a02

U02

a03

U03

a10

U10

a11

U11

a12

U12

a13

U13

a20

U20

a21

U21

a22

U22

a23

U23

a30

U30

a31

U31

a32

U32

a33

U33


(442)

5.2.15. The exponentiation of a tensor to the power n

Definition 5.28 (The exponentiation of a tensor to the power n).

A second-rank co-variant tensor to the power n, denoted by nUµν , is determined by the fact that every
single component of such a tensor is multiplied by itself n-times. In general, it is
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nU µν =



(u00 ×u00 × ...)︸                ︷︷                ︸
n−times

(u01 ×u01 × ...)︸                ︷︷                ︸
n−times

(u02 ×u02 × ...)︸                ︷︷                ︸
n−times

(u03 ×u03 × ...)︸                ︷︷                ︸
n−times

(u10 ×u10 × ...)︸                ︷︷                ︸
n−times

(u11 ×u11 × ...)︸                ︷︷                ︸
n−times

(u12 ×u12 × ...)︸                ︷︷                ︸
n−times

(u13 ×u13 × ...)︸                ︷︷                ︸
n−times

(u20 ×u20 × ...)︸                ︷︷                ︸
n−times

(u21 ×u21 × ...)︸                ︷︷                ︸
n−times

(u22 ×u22 × ...)︸                ︷︷                ︸
n−times

(u23 ×u23 × ...)︸                ︷︷                ︸
n−times

(u30 ×u30 × ...)︸                ︷︷                ︸
n−times

(u31 ×u31 × ...)︸                ︷︷                ︸
n−times

(u32 ×u32 × ...)︸                ︷︷                ︸
n−times

(u33 ×u33 × ...)︸                ︷︷                ︸
n−times


︸                                                                                                  ︷︷                                                                                                  ︸

nUµν

=


(u00)

n (u01)
n (u02)

n (u03)
n

(u10)
n (u11)

n (u12)
n (u13)

n

(u20)
n (u21)

n (u22)
n (u23)

n

(u30)
n (u31)

n (u32)
n (u33)

n


︸                                              ︷︷                                              ︸

nUµν

(443)

This definition is also valid for contra-variant or mixed tensors too.

5.2.16. The exponentiation of a tensor to the power 1/n

Definition 5.29 (The exponentiation of a tensor to the power 1/n).

A second-rank co-variant tensor to the power 1/n, denoted by 1/nU µν , is determined by the fact that
every single component of such a tensor is multiplied by itself (1/n)-times. In general, it is

1/nU µν =


(u00)

1/n (u01)
1/n (u02)

1/n (u03)
1/n

(u10)
1/n (u11)

1/n (u12)
1/n (u13)

1/n

(u20)
1/n (u21)

1/n (u22)
1/n (u23)

1/n

(u30)
1/n (u31)

1/n (u32)
1/n (u33)

1/n


︸                                                     ︷︷                                                     ︸

1/nUµν

(444)

This definition is also valid for contra-variant or mixed tensors too.

5.2.17. The expectation value of a co-variant second rank tensor

Let E(RUµν ) denote the expectation value of a co-variant second rank tensor RUµν .Let p(RUµν )
denote the probability tensor of a tensor RUµν . In general, we define

E
(

RU µν

)
≡ p

(
RU µν

)
∩ RU µν (445)
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and equally

2E
(

RU µν

)
≡ E

(
RU µν

)
∩E

(
RU µν

)
≡ p

(
RU µν

)
∩ p
(

RU µν

)
∩ RU µν ∩ RU µν (446)

Let E(RUklµν . . . ) denote the expectation value of a co-variant n-index rank tensor RUklµν . . . . Let
p(RUklµν . . . ) denote the probability tensor of a co-variant n-index rank tensor RUklµν . . . . In general,
we define expectation value of a co-variant n-index rank tensor as

E
(

RUklµν . . .
)
≡ p

(
RUklµν . . .

)
∩ RUklµν . . . (447)

It is equally true that

2E
(

RUklµν . . .
)
≡E

(
RUklµν . . .

)
∩E
(

RUklµν . . .
)
≡ p

(
RUklµν . . .

)
∩ p
(

RUklµν . . .
)
∩RUklµν . . . ∩RUklµν . . .

(448)

5.2.18. The expectation value of a second rank anti tensor

Let E(RUµν ) denote the expectation value of the covariant second rank anti tensor RUµν . Let p(RUµν )
denote the probability tensor of an anti tensor RUµν . In general, we define

E
(

RU µν

)
≡p
(

RU µν

)
∩U µν

≡
(
1µν − p

(
RU µν

))
∩ RU µν

(449)

Euclid’s theorem is a fundamental statement of geometry and has been proved by Euclid in his famous
work Elements. According to Euclid’s theorem, it is

RU µν ≡ E
(

RU µν

)
+E

(
RU µν

)
(450)

Theorem 36. It is

RU µν ≡ E
(

RU µν

)
+E

(
RU µν

)
(451)

Proof. According to Euclid’s theorem, it is

RU t ≡ E (RU t)+E (RU t) (452)

Multiply RUt by the metric tensor gµν or just define

RU t = RU µν (453)

Then the conclusion is true that

RU µν ≡ E
(

RU µν

)
+E

(
RU µν

)
(454)

□

♡
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5.2.19. The expectation value of a second rank tensor raised to rower 2

Let E(2
RUµν ) denote the expectation value of the covariant second rank tensor RUµν raised to the

power 2. Let p(RUµν ) denote the probability tensor of a tensor RUµν . In general, we define

E
(

2
RU µν

)
≡p
(

RU µν

)
∩ RU µν ∩ RU µν

≡p
(

RU µν

)
∩
(

2
RU µν

) (455)

Let 2E(RUklµν . . . ) denote the expectation value of a co-variant n-index rank tensor 2
RUklµν . . . . Let

p(RUklµν . . . ) denote the probability tensor of a co-variant n-index rank tensor RUklµν . . . . In general,
we define the expectation value of a co-variant n-index rank tensor raised to rower 2 as

2E
(

RUklµν . . .
)
≡ p

(
RUklµν . . .

)
∩ RUklµν . . . ∩ RUklµν . . . (456)

5.2.20. The variance of a tensor

Definition 5.30 (The variance of a tensor).

Let RUµν denote a second-rank co-variant tensor. Let p(RUµν ) denote the probability tensor of a tensor

RUµν . The variance of a tensor RUµν , denoted as 2σ
(

RU µν

)
, is defined as

2
σ
(

RU µν

)
≡E
(

2
RU µν

)
− 2 (E (RU µν

))
≡
(

p
(

RU µν

)
∩ RU µν ∩ RU µν

)
−
(

p
(

RU µν

)
∩ RU µν ∩ p

(
RU µν

)
∩ RU µν

)
≡RU µν ∩ RU µν ∩ p

(
RU µν

)
∩
(
1µν − p

(
RU µν

)) (457)

From equation 457 follows that

RU µν ∩ RU µν ≡
2σ
(

RU µν

)
p
(

RU µν

)
∩
(
1µν − p

(
RU µν

)) (458)

and that

RU µν ≡
σ
(

RU µν

)
1/2
(

p
(

RU µν

)
∩
(
1µν − p

(
RU µν

))) (459)

The standard deviation of a second-rank tensor, denoted as σ
(

RU µν

)
, would follow as

σ
(

RU µν

)
≡1/2 (

RU µν ∩ RU µν ∩ p
(

RU µν

)
∩
((

1µν − p
(

RU µν

))))
≡ 2
√(

RU µν ∩ RU µν ∩ p
(

RU µν

)
∩
((

1µν − p
(

RU µν

)))) (460)

CAUSATION ISSN: 1863-9542 https://www.doi.org/10.5281/zenodo.7316360 Volume 18, Issue 4, 5–141

https://portal.issn.org/resource/ISSN/1863-9542
https://www.doi.org/10.5281/zenodo.7316360


109

Let RUklµν . . . denote a co-variant n-index rank tensor. Let p(RUklklµν . . . . . . ) denote the probability
tensor of a co-variant n-index rank tensor RUklµν . . . . The variance of a co-variant n-index rank tensor

RUklµν . . . , denoted as 2σ
(

RUklµν . . .
)
, is defined as

2
σ
(

RUklµν . . .
)

≡E
(

2
RUklµν . . .

)
− 2 (E (RUklµν . . .

))
≡
(

p
(

RUklµν . . .
)
∩ RUklµν . . . ∩ RUklµν . . .

)
−
(

p
(

RUklµν . . .
)
∩ RUklµν . . . ∩ p

(
RUklµν . . .

)
∩ RUklµν . . .

)
≡RUklµν . . . ∩ RUklµν . . . ∩ p

(
RUklµν . . .

)
∩
(
1klµν . . . − p

(
RUklµν . . .

))
(461)

From equation 461 follows that

RUklµν . . . ∩ RUklµν . . . ≡
2σ
(

RUklµν . . .
)

p
(

RUklµν . . .
)
∩
(
1klµν . . . − p

(
RUklµν . . .

)) (462)

and that

RUklµν . . . ≡
σ
(

RUklµν . . .
)

1/2
(

p
(

RUklµν . . .
)
∩
(
1klµν . . . − p

(
RUklµν . . .

))) (463)

The standard deviation of a second-rank tensor, denoted as σ
(

RUklµν . . .
)
, would follow as

σ
(

RUklµν . . .
)

≡1/2 (
RUklµν . . . ∩ RUklµν . . . ∩ p

(
RUklµν . . .

)
∩
((

1klµν . . . − p
(

RUklµν . . .
))))

≡ 2
√(

RUklµν . . . ∩ RUklµν . . . ∩ p
(

RUklµν . . .
)
∩
((

1klµν . . . − p
(

RUklµν . . .
)))) (464)

5.2.21. The co-variance of two tensors

Definition 5.31 (The co-variance of two tensors).

Let RUµν denote a second-rank co-variant tensor. Let p(RUµν ) denote the probability tensor of a ten-
sor RUµν . According to equation 442, the probability tensor of a tensor RUµν is defined as p(RUµν ).
Let RWµν denote a second-rank co-variant tensor. Let p(RWµν ) denote the probability tensor of a
tensor RWµν (see equation 442). Let p(RUµν , RWµν ) denote the probability of a joint tensor of
the two tensors RUµν and RWµν .The co-variance of the two tensors RUµν and RWµν , denoted as
σ
(

RU µν . . . ,RW µν . . .
)
, is defined as

σ
(

RU µν ,RW µν

)
≡E
(

RU µν ,RW µν

)
−
(
E
(

RU µν

)
×E

(
RW µν

))
≡
(

p
(

RU µν ,RW µν

)
∩ RU µν ∩ RW µν

)
−
(

p
(

RU µν

)
∩ RU µν ∩ p

(
RW µν

)
∩ RW µν

)
≡RU µν ∩ RW µν ∩

(
p
(

RU µν ,RW µν

)
−
(

p
(

RU µν

)
× p

(
RW µν

)))
(465)

CAUSATION ISSN: 1863-9542 https://www.doi.org/10.5281/zenodo.7316360 Volume 18, Issue 4, 5–141

https://portal.issn.org/resource/ISSN/1863-9542
https://www.doi.org/10.5281/zenodo.7316360


110

From equation 465 follows that

RU µν ∩ RW µν ≡
σ
(

RU µν ,RW µν

)(
p
(

RU µν ,RW µν

)
−
(

p
(

RU µν

)
× p

(
RW µν

))) (466)

Let RUklµν . . . denote a co-variant n-index rank tensor. Furthermore, let p(RUklµν . . . ) denote the proba-
bility tensor of a co-variant n-index rank tensor RUklµν . . . . According to equation 442, the probability
tensor of a co-variant n-index rank tensor RUklµν . . . is defined as p(RUklµν . . . ). Let RWklµν . . . denote
a co-variant n-index rank tensor. Let p(RWklµν . . . ) denote the probability of this co-variant n-index
rank tensor RWklµν . . . (see equation 442). Let p(RUklµν . . . , RWklµν . . . ) denote the probability of a
joint tensor of the two co-variant n-index rank tensors RUklµν . . . and RWklµν . . . .The co-variance of the
two co-variant n-index rank tensor RUklµν . . . and RWklµν . . . , denoted as σ

(
RUklµν . . . ,RW klµν . . .

)
, is

defined as

σ
(

RUklµν . . . ,RW klµν . . .
)

≡E
(

RUklµν . . . ,RW klµν . . .
)
−
(
E
(

RUklµν . . .
)
×E

(
RW klµν . . .

))
≡
(

p
(

RUklµν . . . ,RW klµν . . .
)
∩ RUklµν . . . ∩ RW klµν . . .

)
−
(

p
(

RUklµν . . .
)
∩ RUklµν . . . ∩ p

(
RW klµν . . .

)
∩ RW klµν . . .

)
≡RUklµν . . . ∩ RW klµν . . . ∩

(
p
(

RUklµν . . . ,RW klµν . . .
)
−
(

p
(

RUklµν . . .
)
× p

(
RW klµν . . .

)))
(467)

From equation 467 follows that

RUklµν . . . ∩ RW klµν . . . ≡
σ
(

RUklµν . . . ,RW klµν . . .
)(

p
(

RUklµν . . . ,RW klµν . . .
)
−
(

p
(

RUklµν . . .
)
× p

(
RW klµν . . .

))) (468)
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5.3. Einstein’s theory of special relativity

Definition 5.32 (Energy RE and mass Rm equivalence ).

As long as we have the right to rely on the insights of the special theory of relativity, it turns out to be
that (relativistic) energy RE and (relativistic) mass Rm are only two different(see also Einstein, 1905c,
p. 641) viewpoints on the one and the same physical quantity. The energy-mass(see also Einstein,
1912, p. 1062) equivalence (see Einstein, 1935) is given as

RE = Rm× c2 (469)

The relativistic mass is depending on the motion of an object and corresponds to the total energy of
an object. However, different observers in relative motion might see different values for the relativistic
mass. Furthermore, the relativistic mass of a moving object is at the end larger than the mass at rest,
the mass of the same object at rest. The reason is that a moving object has relativistic kinetic energy
(see Barukčić, 2013). Equally, it is

0E = 0m× c2 (470)

while 0 E is the rest energy, the energy of an object in its own rest frame 0 and 0 m is the rest mass, the
mass of an object in its own rest frame 0. It is

0E

RE
=

0m× c2

Rm× c2 =
0m

Rm
=

√
1− v2

c2 (471)

where c is the speed of light in vacuum and v is the relative velocity between an observer at rest and a
stationary observer. The normalised energy-momentum relation (see Barukčić, 2016c) is given as

0m2

Rm2 +
v2

c2 = 1 (472)

while p(0 m) is the probability of finding an object local (see Barukčić, 2022) and is given as

p(0m) =
0m2

Rm2 = 1− v2

c2 (473)
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Definition 5.33 (Time and gravitational field equivalence ).

Time and gravitational field have been identified (see Barukčić, 2011) as being equivalent, as the
two faces of one and the same coin. But the road there is long and not without pitfalls. However,
in relation to the character of the relationship between time and gravitational field, Einstein’s opinion
would have to be emphasised again.

“Wir unterscheiden im folgenden zwischen ‘Gravitationsfeld’und ‘Materie’, in dem Sinne, daß
alles außer dem Gravitationsfeld als ‘Materie’bezeichnet wird, also nicht nur
die ‘Materie’im üblichen Sinne, sondern auch das elektromagnetische Feld. ”

(Einstein, 1916, p. 802/803)

Firstly. Everything but the gravitational field is matter, there is no third between matter and gravi-
tational field, a third is not given, tertium non datur. Secondly. Matter, from the point of view of a
stationary observer R, includes not only matter in the ordinary sense, but the electromagnetic field as
well (Einstein, 1916, p. 802/803). Finally, one consequential relationship is necessary to mention. “Da
Masse und Energie nach den Ergebnissen der speziellen Relativitätstheorie das Gleiche sind und die
Energie formal durch den symmetrischen Energietensor (Tµv) beschrieben wird, so besagt dies, daß
das G-Geld [gravitational field, author] durch den Energietensor der Materie bedingt und bestimmt ist
”(Einstein, 1918b). Matter or energy is the cause of the gravitational field. However, is this relationship
valid vice versa to?

Definition 5.34 (Time Rtt and gravitational field Rgt).

Albert Einstein (see Einstein, 1905b, p. 904) pointed to the relationship between proper (see
Minkowski, 1908) time 0t (independent of coordinates) usually represented by the Greek letter τ and
relativistic time Rt (coordinate time) as

0t = Rt ×

√
1− v2

c2 (474)

It is

0t

Rt
=

√
1− v2

c2 (475)

The relationship between proper time and coordinate time is normalised (see Barukčić, 2016c) as

0t2

Rt2 +
v2

c2 =+1 (476)

where c is the speed of light in vacuum and v is the relative velocity between an observer at rest and
a stationary observer. The fundamental relationship between gravitational field Rgt from the point of
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view of the stationary observer R and time Rtt from the point of view of the same stationary observer
R is determined(Barukčić, 2011, 2013, 2016c,d) by the equation

Rgt ≡ Rt t

c2 (477)

and from the point of view of a co-moving observer 0 by the equation

0gt ≡ 0t t

c2 (478)

Next we define(Barukčić, 2011, 2016d) the following mathematical identities related to time, to which
a concrete physical meaning would have to be attached in the following of further development.

Wt t ≡ v× c×Rgt (479)

In general, it is
Wt t

2 ≡ (v× c×Rgt)
2 ≡ Rt t

2 − 0t t
2 (480)

and
Wgt ≡ Wt t

c2 (481)

As such (see equation 480), it is a logical step to consider that

Rgt ≡ 0gt +Wgt (482)

I should like to take this opportunity to express once again the possibility that Wgt itself might represent
something similar to the gravitational waves. Let the mathematical identity Ktt be defined as follows.

Kt t ≡ Wt t ×Wt t

Rt t
≡ Wt t

Rt t
×Wt t ≡

(v× c×Rgt)
2

c2 ×Rgt
≡ v2 ×Rgt (483)

The notion Ktt might indicate the time as determined by the relativistic kinetic energy KEt. Let the
mathematical identity Ptt be defined as follows.

Pt t ≡ 0t t × 0t t

Rt t
≡ 0t t

Rt t
× 0t t ≡

√1− v2

c2

× 0t t (484)

The notion Ptt might indicate the time as determined by the relativistic potential energy PEt. In general,
it is necessary to consider that,

Rt t ≡ Pt t +Kt t (485)

Furthermore, the following identities are defined.

Kgt ≡ Kt t

c2 (486)

Pgt ≡ Pt t

c2 (487)

The identity Kredtt is defined as
Kredt t ≡ v×Rgt (488)
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Definition 5.35 (Space RSt).

We define the general relationship

RSt ≡ 0St + 0St ≡ RU t × c2 (489)

In case, that there are not justified reasons to doubt the correctness of Einstein’s demand that all but
matter is a gravitational field(Einstein, 1916, p. 802/803), we define

RU t ≡ RMt +Rgt ≡ RSt

c2 (490)

where RUt is the mathematical identity of matter RMt and gravitational field Rgt, RSt is something
like space and c is the speed of the light in vacuum. The following figure might illustrate this basic
relationship from another point of view.

We multiply equation 490 by the term

(√
1− v2

c2

)
where v is the relative velocity between a

co-moving observer 0 and a stationary observer R. It isRU t ×

√1− v2

c2

≡

RMt ×

√1− v2

c2

+

Rgt ×

√1− v2

c2

 (491)

We define 0Ut as

0U t ≡ RU t ×

√1− v2

c2

 (492)

According to Einstein, the rest-mass 0mt is given as

0mt ≡ RMt ×

√1− v2

c2

 (493)

We define 0gt as

0gt ≡ Rgt ×

√1− v2

c2

 (494)

Equation 491 as seen from the point of view of a co-moving observer 0 becomes

0U t ≡ 0mt + 0gt (495)

where 0mt indicates the rest mass as determined by the co-moving observer, 0gt is the gravitational
field as determined by the co-moving observer and 0Ut is the unity and the ’struggle’ of both.
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5.4. Einstein’s general theory or relativity

Definition 5.36 (The Einstein field equations). The Einstein field equations (Einstein, 1915, 1916,
1917, 1935, Einstein and Sitter, 1932) describe the relationship between the presence of matter(

represented by the stress− energy tensor
((

4×2×π × γ

c4

)
×T µν

))
in a given region of space

time and the curvature
(

represented by the Einstein tensor Gµν = Rµν −
((

R
2

)
×gµν

))
in that re-

gion of space time by the equation

Rµν −
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

4×2×π × γ

c4

)
×T µν

≡ Eµν

(496)

where Rµν is the Ricci tensor (Ricci-Curbastro and Levi-Civita, 1900) of ‘Einstein’s general the-
ory of relativity’ (Einstein, 1916), R is the Ricci scalar, the trace of the Ricci curvature tensor with
respect to the metric and equally the simplest curvature invariant of a Riemannian manifold, Λ is the
Einstein’s cosmological (Barukčić, 2015a, Einstein, 1917) constant, Λ is the “anti cosmological con-
stant” (Barukčić, 2015a), gµν is the metric tensor of Einstein’s general theory of relativity, Gµν is
Einstein’s curvature tensor, Gµν is the “anti tensor” (Barukčić, 2016c) of Einstein’s curvature ten-
sor, Eµν is the stress-energy tensor of energy, Eµν is the tensor of non-energy, the anti-tensor of the
stress-energy tensor of energy, aµν , bµν , cµν and dµν denote the four basic fields of nature were aµν

is the stress-energy tensor of ordinary matter, bµν is the stress-energy tensor of the electromagnetic
field, c is the speed of the light in vacuum, γ is Newton’s gravitational “constant” (Barukčić, 2015a,b,
2016a,c), π is Archimedes constant pi.

Einstein’s field equations are defined in space-time dimensions (see Málek, 2012, p. 31) other than
3+1 too. Table 13 may provide a more detailed and preliminary overview of the definitions (Barukčić,
2016b,c) before.

Curvature
YES NO

Momentum YES aµν bµν ≡ (cµν + Λ× gµν )
8×π × γ ×T

c4 ×D
× gµν ≡

(
R
D
− R

2
+Λ

)
×gµν

NO cµν ≡ (bµν - Λ× gµν ) dµν ≡ (
R
2
× gµν - bµν )

(
R
2
−Λ

)
×gµν

Gµν ≡
(

R
D
− R

2

)
×gµν

R
2
× gµν Rµν ≡ R

D
×gµν

Table 13. Four basic fields of nature and the Einstein field equations.

From Einstein’s specific point of view, two wings are necessary to get to the core of the relationship
between matter and gravitational field, just as two wings are essential for a bird that conquers the air.
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We are quite privileged to consider in detail that(
R
D
×gµν

)
−
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
︸                                                       ︷︷                                                       ︸

the le f t−hand side

≡
(

4×2×π × γ ×T
c4 ×D

)
×gµν︸                                 ︷︷                                 ︸

the right−hand side

(497)

while Rµν ≡ aµν +bµν + cµν +dµν and the

“... one wing ... is made of fine marble (left side of the equation) ...

the other wing ... is built of low-grade wood (right side of equation).

The phenomenological representation of matter is, in fact, only a crude substitute for a
representation which would do justice to all known properties of matter. ”

(Einstein, 1936, p. 370)

Taken together, the nth index, D-dimensional Einstein’s gravitational field equations (Barukčić,
2020d) follow as(

R
D
×gµνπρ . . .

)
−
((

R
2

)
×gµνπρ . . .

)
+
(
Λ×gµνπρ . . .

)
︸                                                                            ︷︷                                                                            ︸

(local) space−time curvature

≡
(

4×2×π × γ ×T
c4 ×D

)
×gµνπρ . . .︸                                        ︷︷                                        ︸

(local) energy and momentum

(498)

The stress-energy tensor, has the unit of energy density, or pressure or of energy/volume = pressure =
force/area, while the metric tensor is unitless (see Porta Mana, 2021). Einstein’s constant converts
converts the stress-energy to the units of the left side of the field equation, each term of which is of
unit 1/L2. However and in general, the metric field (responsible for gravitational-inertial properties of
bodies) on the left-hand side of Einstein’s field equations, is completely determined by a tensorial but
non-geometrical phenomenological representation of matter on the right-hand side. Einstein himself
had a very differentiated view of these two sides of his field equations. In point of fact, the left part
of the Einstein field equations (the Einstein tensor) is taken by Einstein as fine marble because of its
geometrical nature, whereas the right side of the equations is lacking similar geometric significance
and was degraded by Einstein himself to low-grade wood, the need for geometrical unification follows
at least from such an asymmetrical state of affairs.

“The mind striving after unification of the theory cannot be satisfied that two fields should exist
which, by their nature, are quite independent. A mathematically unified field theory is sought in
which the gravitational field and the electromagnetic field are interpreted only as different

components or manifestations of the same uniform field ... The gravitational theory ... should be
generalized so that it includes the laws of the electromagnetic field. ”

(Einstein, 1923a, p. 489)

An incorporation of electromagnetism and of other fields into spacetime geometry is desirable. In point
of fact, a striving toward unification and simplification of the premises and of Einstein’s general theory
of relativity as a whole is necessary.
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Definition 5.37 (The stress-energy tensor of ordinary matter aµν ). Howard Georgi and Sheldon
Glashow (Georgi and Glashow, 1974) proposed in 1974 the first Grand Unified Theory (Buras et al.,
1978). Grand Unified Theory (GUT) models predict the unification of the electromagnetic, the weak,
and the strong forces into a single force. However, it appears to be more appropriate to unify the
strong nuclear force and the weak nuclear force into an ordinary force. The matter as associated with
an ordinary force can be calculated very precisely. Under conditions of Einstein’s general (Einstein,
1915, 1916, 1917, 1935, Einstein and Sitter, 1932) theory of relativity, the stress-energy tensor of
ordinary matter aµν which is expected to unify the strong nuclear force and the weak nuclear force
into an ordinary force is defined / derived / determined as

aµν ≡
((

4×2×π × γ

c4

)
×T µν

)
−bµν

≡ Gµν +
(
Λ×gµν

)
−bµν

≡ Rµν −
(
R×gµν

)
+
(((

Λ×gµν

)
+dµν

)
= 0
)

≡
((

R
D

)
×gµν

)
−
(
R×gµν

)
≡ (E −b)×gµν

≡ (G− c)×gµν

≡ a×gµν

(499)

or

aµν ≡ Rµν −
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
−(

1
4×π

×
((

Fµ c ×Fν d ×gcd
)
+

(
1
4
×gµν ×Fde ×Fde

)))
(500)

From our present point of view we can expect that there are conditions where

aµν ≡
((

4×2×π × γ

c4

)
×T µν

)
−bµν

≡
((

R
D
− R

2
+Λ

)
−
(
(4+D)×F1

4×π ×4×D

))
×gµν

(501)

where F1 is Lorenz invariant.

Definition 5.38 (The 4-index D dimensional a klµν ). The 4-index D dimensional a klµν is defined as:

aklµν ≡ (E −b)×gklµν

≡ (G− c)×gklµν

≡ a×gklµν

(502)

Definition 5.39 (The n-index D dimensional a klµν . . . ). The n-index D dimensional a klµν . . . is defined
as:

aklµν . . . ≡ (E −b)×gklµν . . .

≡ (G− c)×gklµν . . .

≡ a×gklµν . . .

(503)
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Definition 5.40 (Ricci scalar R). Under conditions of Einstein’s general (Einstein, 1915, 1916, 1917,
1935, Einstein and Sitter, 1932) theory of relativity, the Ricci scalar curvature R as the trace of the
Ricci curvature tensor Rµν with respect to the metric is a quantity which is determined at each point
in space-time by lamda Λ and anti-lamda (Barukčić, 2015a) Λ as

R ≡ gµν ×Rµν ≡ (Λ)+(Λ)≡ D×S (504)

where D is proved as the number of space-time dimension and S ≡
(

R
D

)
. A Ricci scalar curvature R

which is positive at a certain point indicates that the volume of a small ball about the point has smaller
volume than a ball of the same radius in Euclidean space. In other words, the density of space varies.
In contrast to this, a Ricci scalar curvature R which is negative at a certain point indicates that the
volume of a small ball is larger than it would be in Euclidean space. In general, it is (see Barukčić,
2015a)

R×gµν ≡
(
Λ×gµν

)
+
(
Λ×gµν

)
(505)

or
R ≡ (Λ)+(Λ) (506)

The cosmological constant can also be written algebraically as part of the stress–energy tensor, a
second order tensor as the source of gravity (energy density).

Under conditions where R = 0, it is
−(Λ) = +(Λ) (507)

Definition 5.41 (Ricci tensor Rµν ). The Ricci tensor Rµν is a geometric object which has been devel-
oped by Gregorio Ricci-Curbastro (1853 – 1925) (Ricci-Curbastro and Levi-Civita, 1900) and is able
to measure of the degree to which a certain geometry of a given metric differs from that of ordinary Eu-
clidean space. In this publication, let aµν , bµν , cµν and dµν denote the covariant second rank tensors
of the four basic fields of nature were aµν ≡ fa2 × gµν is the stress-energy tensor of ordinary matter,
bµν ≡ fb2×gµν is the stress-energy tensor of the electromagnetic field, cµν ≡ c2×gµν is the tensor of
the gravitational field and dµν ≡ fd2 ×gµν is the tensor of gravitational waves. The Ricci tensor Rµν

of ‘Einstein’s general theory of relativity’ (Einstein, 1916) is determined by the stress-energy tensor((
4×2×π × γ

c4

)
×T µν

)
and the anti stress-energy tensor

(((
R
2

)
×gµν

)
−
(
Λ×gµν

))
as

Rµν ≡
((

4×2×π × γ

c4

)
×T µν

)
︸                                 ︷︷                                 ︸

stress−energy tensor

+

(((
R
2

)
×gµν

)
−
(
Λ×gµν

))
︸                                       ︷︷                                       ︸

anti stress−energy tensor

≡ aµν +bµν + cµν +dµν

≡ (S)×gµν

≡
(

R
D

)
×gµν

(508)

while S might denote a scalar.
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Definition 5.42 (Laue’s scalar T). Max von Laue (1879-1960) proposed the meanwhile so called Laue
scalar (Laue, 1911) (criticised by Einstein (Einstein and Grossmann, 1913, Norton, 1992) ) as the
contraction of the the stress–energy momentum tensor Tµν denoted as T and written without subscripts
or arguments. Einstein wrote.

“Es bietet sich bei Charakterisierung des Gravitationsfeldes durch einen Skalar ein Weg dar ... bei
dieser Auffassung ein Skalar maßgebend für die Wechselwirkung zwischen Gravitationsfeld und

materiellem Vorgang. Dieser Skalar kann, worauf mich Herr Laue aufmerksam machte, nur

∑µ T µµ = P

sein, den ich als den ‘Laue’schen Skalar’bezeichnen will. ”

(Einstein and Grossmann, 1913, p. 23)

Translated into English: There is a way to characterize the gravitational field by a scalar ... in this
view a scalar is decisive for the interaction between gravitational field and a material process. This
scalar can only be, as Mr. Laue pointed out to me, ∑µ T µµ = P which I will call ‘Laue’s scalar’.

Under conditions of Einstein’s general (Einstein, 1915, 1916, 1917, 1935, Einstein and Sitter,
1932) theory of relativity, it is

T ≡ gµν ×T µν (509)

Taken Einstein seriously, Tµν “denotes the co-variant energy tensor of matter” (see Einstein,
1923b, p. 88). In other words, “Considered phenomenologically, this energy tensor is composed of
that of the electromagnetic field and of matter in the narrower sense.” (see Einstein, 1923b, p. 93)

Scalars are of use to describe circumstances of Einstein’s theory of general relativity. However,
it is necessary to point out a crucial difference. The use of scalars should not be confused neither
with Brans-Dicke (see Brans and Dicke, 1961) theory of gravitation (see Norton, 1992) nor with
Nordström’s theory of gravitation (see Nordström, 1913a,b).The last has been found to be logically
inconsistent.
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Definition 5.43 (The scalar E). In general, we define the scalar E as

E ≡ dE t
2 ≡

(
8×π × γ

c4 ×D

)
×T

≡
(

8×π × γ ×T
c4 ×D

)
≡
(

2×π ×4× γ ×T
c4 ×D

)
≡
(

h×4× γ ×T
ℏ× c4 ×D

)
≡
(

R
D

)
−
(

R
2

)
+Λ

(510)

where D is the space-time dimension, where c denote the speed of the light in vacuum, γ denote New-
ton’s gravitational “constant” (Barukčić, 2015a,b, 2016a,c), π is the number pi and T denote Laue’s
scalar. The scalar E might correspond even to the total energy density squared of a (relativistic or
quantum) system, and has the potential as such to bridge the gap between relativity theory and quan-
tum mechanics under circumstances where the same is related or even identical with the Hamiltonian
operator (squared).

Definition 5.44 (Stress-energy and momentum tensor Eµν ). The stress–energy–momentum tensor
or the stress–energy tensor or the energy–momentum tensor or energy tensor of matter Tµν is the
source of the gravitational field in the Einstein field equations of general relativity. In point of fact, the
stress–energy–momentum tensor Tµν itself is determined by sub-tensors and can be decomposed into
the same. Especially, according to Einstein, it is necessary to consider that

“... a tensor, Tµν , of the second rank ... includes in itself the energy density of the electromagnetic
field and of ponderable matter; we shall denote this in the following as the ‘energy tensor of

matter”’

(Einstein, 1923b, pp. 87/88)

The tensor of stress-energy-momentum denoted as Eµν is determined in detail as follows.
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Eµν ≡ aµν +bµν

≡
(

4×2×π × γ

c4

)
×T µν

≡
(

4×2×π × γ ×T
c4 ×D

)
×gµν

≡ Rµν −
((

R
2

)
×gµν

)
+
(
Λ×gµν

)
≡
(

S−
(

R
2

)
+Λ

)
×gµν

≡ (G+Λ)×gµν

≡ Gµν +
(
Λ×gµν

)
≡ Rµν −Eµν

≡ E ×gµν

(511)

while E might denote the scalar of, even something like ‘energy density’. From a different angle,
“Considered phenomenologically, this energy tensor is composed of that of the electromagnetic field
and of matter in the narrower sense.” (see also Einstein, 1923b, p. 93) Once again, it is important
to point out that all possible forms of energy and momentum are contained in the stress-energy tensor
Tµν . This includes any matter present but if there is some electromagnetic radiation given then the
same too must be included in Tµν . It goes without saying that in this case there is simply no energy
or momentum left which could be assigned to the gravitational field. Therefore, assigning any kind of
energy density to a gravitational field (see Einstein, 1918a, pp. 156-159) could be difficult, both in
principle and technically. The question inevitably arises why under the conditions of general relativity
energy and momentum should be conserved at all?

Definition 5.45 (The scalar G). In general, we define the scalar G (Barukčić, 2020b) as

G ≡ dGt
2 ≡

((
R
D

)
− R

2

)
≡
(

E + Rt t −
R
2

)
≡
(

E +

(
R
2
−Λ

)
− R

2

)
≡ E −Λ

(512)

Definition 5.46 (Einstein’s curvature tensor Gµν ). Under conditions of Einstein’s general (Einstein,
1915, 1916, 1917, 1935, Einstein and Sitter, 1932) theory of relativity, the tensor of curvature denoted
by Gµν is defined/derived/determined (see Barukčić, 2020b) as follows:
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Gµν ≡ Rµν −
((

R
2

)
×gµν

)
≡
(

R
D

)
×gµν −

((
R
2

)
×gµν

)
≡
((

R
D

)
− R

2

)
×gµν

≡ aµν + cµν

≡ G×gµν

≡
(

R
D

)
×Ggµν

(513)

Definition 5.47 (The scalar G). In general, we define the scalar G (see Barukčić, 2020b) as

G ≡ dGt
2 ≡

((
R
D

)
−G

)
≡
(

R
2

) (514)

Definition 5.48 (The scalar E ). In general, we define the scalar E as (see Barukčić, 2020b)

E ≡ dE t
2 ≡

((
R
D

)
−E

)
≡
(

R
2
−Λ

) (515)

Remark 5.1. In the following of research, it is appropriate to prove the relationship between (1/X) and
the complex conjugate of the wave function Ψ* or the identity (1/X)≡ Ψ*.

Definition 5.49 (The anti Einstein’s curvature tensor or the tensor of non-curvature Gµν ). Under
conditions of Einstein’s general (Einstein, 1915, 1916, 1917, 1935, Einstein and Sitter, 1932) theory
of relativity, the tensor of non-curvature is defined/derived/determined (Barukčić, 2020b) as follows:

Gµν ≡ Rµν −Gµν

≡ Rµν −
(

Rµν −
((

R
2

)
×gµν

))
≡
(

R
2

)
×gµν

≡ bµν +dµν

≡ G×gµν

(516)
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Definition 5.50 (The 4-index D dimensional stress-energy and momentum tensor Eklµν ). The 4-
index D dimensional stress-energy-momentum tenosr denoted as Eklµν is determined in detail as

Eklµν ≡
(

8×π × γ ×T
c4 ×D

)
×gklµν

≡ Rklµν −
((

R
2

)
×gklµν

)
+
(
Λ×gklµν

)
≡ Gklµν +

(
Λ×gklµν

)
≡ Rklµν −Eklµν

≡ aklµν +bklµν

≡ H ×gklµν ≡ Hklµν

≡ E ×gklµν

(517)

Definition 5.51 (The n-index D dimensional stress-energy and momentum tensor Eklµν . . . ). The
n-index D dimensional stress-energy-momentum tenosr denoted as Eklµν . . . is determined in detail as

Eklµν . . . ≡
(

8×π × γ ×T
c4 ×D

)
×gklµν . . .

≡ Rklµν . . . −
((

R
2

)
×gklµν . . .

)
+
(
Λ×gklµν . . .

)
≡ Gklµν . . . +

(
Λ×gklµν . . .

)
≡ Rklµν . . . −Eklµν . . .

≡ aklµν . . . +bklµν . . .

≡ H ×gklµν . . . ≡ Hklµν . . .

≡ E ×gklµν . . .

(518)

Definition 5.52 (The tensor of non-energy Eµν ). Under conditions of Einstein’s general (Einstein,
1915, 1916, 1917, 1935, Einstein and Sitter, 1932) theory of relativity, the tensor of non-energy or the
anti tensor of the stress energy tensor is defined/derived/determined as follows:

Eµν ≡ Rµν −
(

4×2×π × γ

c4

)
×T µν

≡
((

R
2

)
×gµν

)
−
(
Λ×gµν

)
≡
((

R
2
−Λ

)
×gµν

)
≡ cµν +dµν

≡ Ψ×gµν ≡ Ψµν

≡ E ×gµν

(519)
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Definition 5.53 (The 4-index D dimensional tensor of non-energy Eklµν ). The 4-index D dimen-
sional tensor (Einstein, 1915, 1916, 1917, 1935, Einstein and Sitter, 1932) of non-energy Eklµν is
defined as follows:

Eklµν ≡
(

R
D
×gklµν

)
−
((

8×π × γ ×T
c4 ×D

)
×gklµν

)
≡
((

R
2

)
×gklµν

)
−
(
Λ×gklµν

)
≡
((

R
2
−Λ

)
×gklµν

)
≡ cklµν +dklµν

≡ Ψ×gklµν ≡ Ψklµν

≡ E ×gklµν

(520)

Definition 5.54 (The n-th index D dimensional tensor of non-energy Eklµν . . . ). The n-th index
D dimensional tensor (Einstein, 1915, 1916, 1917, 1935, Einstein and Sitter, 1932) of non-energy
Eklµν . . . is defined as follows:

Eklµν . . . ≡
(

R
D
×gklµν . . .

)
−
((

8×π × γ ×T
c4 ×D

)
×gklµν . . .

)
≡
((

R
2

)
×gklµν . . .

)
−
(
Λ×gklµν . . .

)
≡
((

R
2
−Λ

)
×gklµν . . .

)
≡ cklµν . . . +dklµν . . .

≡ Ψ×gklµν . . . ≡ Ψklµν . . .

≡ E ×gklµν . . .

(521)

Definition 5.55 (The 4-index D dimensional Einstein’s curvature tensor Gklµν ). The Riemann ten-
sor Rklµν does not appear explicitly in Einstein’s gravitational field equations. Therefore, the question
is justified whether Einstein’s equation of gravitation are really the most general equations. Frėdėric
Moulin proposed in the year 2017 a kind of a generalized 4-index gravitational field equation which
contains the Riemann curvature tensor linearly (Moulin, 2017). Moulin himself ascribed an energy-
momentum to the gravitational field itself (Moulin, 2017, p. 5/8) which is not without problems.
Besides of all, it is known that the Riemann curvature tensor of general relativity Rklµν can be split
into different ways, including the Weyl conformal tensor Cklµν and the anti-Weyl conformal tensor
Cklµν or in other words the parts which involve only the Ricci tensor Rµν the curvature scalar R.
Because of these properties

(
Rklµν ≡Cklµν +Cklµν

)
it is possible to reformulate the famous Einstein

equation. The 4-index D dimensional Einstein’s curvature tensor (Einstein, 1915, 1916, 1917, 1935,
Einstein and Sitter, 1932) denoted by Gklµν is defined (see Barukčić, 2020b) as follows:
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Gklµν ≡ Rklµν −
((

R
2

)
×gklµν

)
≡
(

R
D

)
×gklµν −

((
R
2

)
×gklµν

)
≡
((

R
D

)
− R

2

)
×gklµν

≡ aklµν + cklµν

≡ G×gklµν

(522)

Definition 5.56 (The n-index D dimensional Einstein’s curvature tensor Gklµν . . . ). The n-index D
dimensional Einstein’s curvature tensor (Einstein, 1915, 1916, 1917, 1935, Einstein and Sitter, 1932)
denoted by Gklµν . . . is defined (see Barukčić, 2020b) as follows:

Gklµν . . . ≡ Rklµν . . . −
((

R
2

)
×gklµν . . .

)
≡
(

R
D

)
×gklµν . . . −

((
R
2

)
×gklµν . . .

)
≡
((

R
D

)
− R

2

)
×gklµν . . .

≡ aklµν . . . + cklµν . . .

≡ G×gklµν . . .

(523)

Definition 5.57 (The 4-index D dimensional anti Einstein’s curvature tensor or the tensor or
non-curvature G klµν ). The 4-index D dimensional anti Einstein’s curvature tensor (Einstein, 1915,
1916, 1917, 1935, Einstein and Sitter, 1932) or the tensor of non-curvature denoted as G klµν is de-
fined/derived/determined (Barukčić, 2020b) as follows:

G klµν ≡ Rklµν −Gklµν

≡ Rklµν −
(

Rklµν −
((

R
2

)
×gklµν

))
≡
(

R
2

)
×gklµν

≡ bklµν +dklµν

≡ G×gklµν

(524)

Definition 5.58 (The n-index D dimensional anti Einstein’s curvature tensor or the tensor of
non-curvature G klµν . . . ). The n-index D dimensional anti Einstein’s curvature tensor or the tensor
of non-curvature denoted as G klµν . . . is defined/derived/determined (Barukčić, 2020b) as follows:
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G klµν . . . ≡ Rklµν . . . −Gklµν . . .

≡ Rklµν . . . −
(

Rklµν . . . −
((

R
2

)
×gklµν . . .

))
≡
(

R
2

)
×gklµν . . .

≡ bklµν . . . +dklµν . . .

≡ G×gklµν . . .

(525)

Definition 5.59 (The first quadratic Lorentz invariant F1 ). The inner product of Faraday’s electro-
magnetic field strength tensor yields a Lorentz invariant. The Lorentz invariant does not change from
one frame of reference to another. The first quadratic Lorentz invariant, denoted as F1 is determined
as

F1 ≡ Fkl ×Fkl (526)

The electromagnetic field tensor Fkl has two Lorentz invariant quantities. One of the two fundamen-
tal Lorentz invariant quantities of the electromagnetic field (Escobar and Urrutia, 2014) is known be
Fkl ×Fkl = 2×

(
B2 −E2) where E denotes the electric E and B the magnetic field in the taken frame

of reference.

Definition 5.60 (The second quadratic Lorentz invariant F2). The second quadratic Lorentz invari-
ant, denoted as F2 is determined as

F2 ≡ ε
klmn ×Fkl ×Fmn (527)

Definition 5.61 (The tensor bµν ). The co-variant Minkowski’s stress-energy tensor of the electromag-
netic field, in this context denoted by bµν , is of order two and its components can be displayed by a 4
× 4 matrix too. The trace of energy-momentum tensor of the electromagnetic field is known to be null.
Under conditions of Einstein’s general theory of relativity (Einstein, 1915, 1916, 1917, 1935, Einstein
and Sitter, 1932), the tensor bµν denotes the trace-less, symmetric stress-energy tensor for source-free
electromagnetic field is defined in cgs-Gaussian units (depending upon metric signature) as

bµν ≡
(

1
4×π

×
((

Fµ c ×Fν
c)+(1

4
×gµν ×Fde ×Fde

)))
(528)

(see Lehmkuhl, 2011, p. 13) and equally as

bµν ≡
(

1
4×π

×
((

Fµ c ×Fν d ×gcd
)
−
(

1
4
×gµν ×Fde ×Fde

)))
(529)
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(see Hughston and Tod, 1990, p. 38) 6 . The co-variant Minkowski’s stress-energy tensor of the
electromagnetic field is expressed under conditions of D = 4 space-time dimensions more compactly in
a coordinate-independent (theorem 3.1, equation 80 Barukčić, 2020b, p. 157) form as

bµν ≡
(

1
4×π

×
((

Fµ c ×Fν d ×gcd
)
+

(
1
4
×gµν ×Fde ×Fde

)))
≡
(

1
4×π

×
((

Fµ c ×Fµ c)+(F1

4

)))
×gµν

≡
((

R
D

)
−a− c−d

)
×gµν

≡ (E −a)×gµν

≡ b×gµν

(530)

where Fde is called the (traceless) Faraday/electromagnetic/field strength tensor.

Definition 5.62 (The 4-index D dimensional stress-energy tensor of electromagnetic field bklµν ).
The 4-index D dimensional stress-energy tensor of electromagnetic field bklµν is defined as:

bklµν ≡
((

R
D

)
−a− c−d

)
×gklµν

≡ (E −a)×gklµν

≡ b×gklµν

(531)

Definition 5.63 (The n-index D dimensional stress-energy tensor of electromagnetic field bklµν . . . ).
The n-index D dimensional stress-energy tensor of electromagnetic field bklµν . . . is defined as:

bklµν . . . ≡
((

R
D

)
−a− c−d

)
×gklµν . . .

≡ (E −a)×gklµν . . .

≡ b×gklµν . . .

(532)

Definition 5.64 (The tensor cµν ). Under conditions of Einstein’s general (Einstein, 1915, 1916,
1917, 1935, Einstein and Sitter, 1932) theory of relativity, the tensor of non-momentum and curvature
is defined/derived/determined (Barukčić, 2020b) as follows:

cµν ≡ bµν −
(
Λ×gµν

)
≡ (G−a)×gµν

≡
(

R
2
−Λ−d

)
×gµν

≡ (b−Λ)×gµν

≡ c×gµν

(533)

6L. P. Hughston and K. P. Tod. An introduction to general relativity. Cambridge University Press, Cambridge ; New York, 1990.
ISBN 978-0-521-32705-3.
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Definition 5.65 (The 4-index D dimensional tensor c klµν ). The 4-index D dimensional c klµν is
defined as:

cklµν ≡ (G−a)×gklµν

≡
(

R
2
−Λ−d

)
×gklµν

≡ (b−Λ)×gklµν

≡ c×gklµν

(534)

Definition 5.66 (The n-index D dimensional tensor c klµν . . . ). The n-index D dimensional c klµν . . .
is defined as:

cklµν . . . ≡ (G−a)×gklµν . . .

≡
(

R
2
−Λ−d

)
×gklµν . . .

≡ (b−Λ)×gklµν . . .

≡ c×gklµν . . .

(535)

Definition 5.67 (The tensor of neither curvature nor momentum dµν ). Under conditions of Ein-
stein’s general (Einstein, 1915, 1916, 1917, 1935, Einstein and Sitter, 1932) theory of relativity, the
tensor of neither curvature nor momentum is defined/derived/determined (Barukčić, 2020b) as fol-
lows:

dµν ≡
((

R
2

)
×gµν

)
−bµν

≡
((

R
2

)
×gµν

)
−
(
Λ×gµν

)
− cµν

≡


((

R
D

)
×D

)
2

−b

×gµν

≡


((

R
D

)
×D

)
2

−Λ− c

×gµν

≡ R
D
× gwgµν

≡ d ×gµν

(536)

There may exist circumstances where this tensor might indicate something like the density of gravita-
tional waves. In detail, it is

dµν ≡ R
D
×gwgµν ≡

((
R
2

)
×gµν

)
−
(

1
4×π

×
((

Fµ c ×Fν d ×gcd
)
+

(
1
4
×gµν ×Fde ×Fde

)))
(537)
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Under these circumstances, the metric tensor of the gravitational waves gwgµν would follow as

dgµν ≡ gwgµν ≡
D
R
×
(((

R
2

)
×gµν

)
−
(

1
4×π

×
((

Fµ c ×Fν d ×gcd
)
+

(
1
4
×gµν ×Fde ×Fde

))))
(538)

The cosmic microwave background (CMBR) radiation (Penzias and Wilson, 1965) is an electromag-
netic radiation which is part of the tensor bµν .

Definition 5.68 (The 4-index D dimensional d klµν ). The 4-index D dimensional d klµν is defined as:

dklµν ≡


((

R
D

)
×D

)
2

−b

×gklµν

≡


((

R
D

)
×D

)
2

−Λ− c

×gklµν

≡ d ×gklµν

(539)

Definition 5.69 (The n-index D dimensional d klµν . . . ). The n-index D dimensional d klµν . . . is defined
as:

dklµν . . . ≡


((

R
D

)
×D

)
2

−b

×gklµν . . .

≡


((

R
D

)
×D

)
2

−Λ− c

×gklµν . . .

≡ d ×gklµν . . .

(540)
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5.5. Axioms

Whether science needs new and obviously generally valid statements (axioms) which are able to
assure the truth of theorems proved from them may remain an unanswered question. In order to be
accepted, a new axiom candidate (see Easwaran, 2008) should be at least as simple as possible and
logically consistent to enable advances in our knowledge of nature. The importance of axioms is par-
ticularly emphasized by Albert Einstein. “Die wahrhaft großen Fortschritte der Naturerkenntnis
sind auf einem der Induktion fast diametral entgegengesetzten Wege entstanden.” (see Einstein,
1919, p. 17). In general, lex identitatis, lex contradictionis and lex negationis have the potential to
denote the most simple, the most general and the most far-reaching axioms of science, the foundation
of our today’s and of our future scientific inquiry.

5.5.1. Principium identitatis (Axiom I)

Principium identitatis or lex identitatis or axiom I, is closely related to central problems of meta-
physics, epistemology and of science as such. It turns out that it is more than rightful to assume that

+1 ≡+1 (541)

is true, otherwise there is every good reason to suppose that nothing can be discovered at all.

Identity as the epitome of a self-identical or of self-reference is at the same time different from dif-
ference, identity is free from difference, identity is not difference, identity is at the same time the other
of itself, identity is non-identity. Identity as simple equality with itself is determined by a non-being,
by a non-being of its own other, by a non-being of difference, identity is different from difference.
Identity is in its very own nature different and is in its own self the opposite of itself (symmetry). It is
equally

−1 ≡−1 (542)

In general, +1 and -1 are distinguished, however these distinct are related to one and the same 1.
Identity as a vanishing of otherness, therefore, is this distinguishedness in one relation. It is

0 ≡+1−1 ≡ 0×1 ≡ 0 (543)

Identity, as the unity of something and its own other is in its own self a separation from difference,
and as a moment of separation might pass over into an equivalence relation which itself is reflexive,
symmetric and transitive. Nonetheless, backed by thousands of years of often bitter human experience,
the scientific development has taught us all that human knowledge is relative too. Even if experiments
and other suitable proofs are of help to encourage us more and more in our belief of the correctness of
a theory, it is difficult to prove the correctness of a theorem or of a theory et cetera once and for all.
The challenge for all the science is the need to comply with Einstein’s position: “Niemals aber kann
die Wahrheit einer Theorie erwiesen werden. Denn niemals weiß man, daß auch in Zukunft
eine Erfahrung bekannt werden wird, die Ihren Folgerungen widerspricht...” (Einstein, 1919).
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Albert Einstein’s position translated into English: ‘But the truth of a theory can never be proven.
For one never knows if future experience will contradict its conclusion; and furthermore, there are
always other conceptual systems imaginable which might coordinate the very same facts.’Our human
experience tells us that everything in life is more or less transitory, and that nothing lasts. As a result
of our knowledge and experience, several scientific theories have a glorious past to look back on, but
all the glory of such scientific theories might remain in the past if scientist don’t continue to innovate.
In a word, theories can be refuted by time.

“No amount of experimentation can ever prove me right;
a single experiment can prove me wrong.”

(Albert Einstein according to: Robertson, 1998, p. 114)

In the light of the foregoing, it is clear that appropriate axioms and conclusions derived from the
same are a main logical foundation of any ‘theory’.

“Grundgesetz (Axiome) und Folgerungen zusammen bilden das was man eine ‘Theorie’ nennt.
”

(Einstein, 1919)

However, another point is worth being considered again. One single experiment can be enough to
refute a whole theory. Albert Einstein’s (1879-1955) message translated into English as: Basic law
(axioms) and conclusions together form what is called a ‘theory’ has still to get round. However,
an axiom as a free creation of the human mind which precedes all science should be like all other
axioms, as simple as possible and as self-evident as possible. Historically, the earliest documented
use of the law of identity can be found in Plato’s dialogue Theaetetus (185a) as “... each of the two
is different from the other and the same as itself ”7 . However, Aristotle (384–322 B.C.E.), Plato’s
pupil and equally one of the greatest philosophers of all time, elaborated on the law of identity too. In
Metaphysica, Aristotle wrote:

“... all things ... have some unity and identity. ”

(see Aristotle, of Stageira (384-322 B.C.E), 1908, Metaphysica, Chapter IV, 999a, 25-30, p. 66)

7Plato’s dialogue Theaetetus (185a), p. 104.
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In Prior Analytics, 8 , 9 Aristotle, a tutor of Alexander, the thirteen-year-old son of Philip, the king of
Macedon, is writing: “When A applies to the whole of B and of C, and is other predicated of nothing
else, and B also applies to all C, A and B must be convertible. For since A is stated only of B and
C, and B is predicated both of itself and of C, it is evident that B will also be stated of all subjects
of which A is stated, except A itself. ”10 , 11 For the sake of completeness, it should be noted at the
outset that Aristotle himself preferred the law of contradiction and the law of excluded middle as
examples of fundamental axioms. Nonetheless, it is worth noting that lex identitatis is an axiom too,
which possess the potential to serve as the most basic and equally the most simple axiom of science
but has been treated by Aristotle in an inadequate manner without having any clear and determined
meaning for Aristotle himself. Nonetheless, something which is really just itself is equally different
from everything else. In point of fact, is such an equivalence (Degen, 1741) which everything has to
itself inherent or must the same be constructed by human mind and consciousness. Can and how can
something be identical with itself (Förster and Melamed, 2012, Hegel, Georg Wilhelm Friedrich,
1812a, Koch, 1999, Newstadt, 2015) and in the same respect different from itself. An increasingly
popular view on identity is the one advocated by Gottfried Wilhelm Leibniz (1646-1716):

“Chaque chose est ce qu’elle est. Et dans autant d’exemples qu’on voudra
A est A,

B est B. ”
(Leibniz, 1765, p. 327)

or A = A, B = B or +1 = +1. In other words, a thing is what it is (Leibniz, 1765, p. 327). Leib-
niz’ principium identitatis indiscernibilium (p.i.i.), the principle of the indistinguishable, occupies a
central position in Leibniz’ logic and metaphysics and was formulated by Leibniz himself in different
ways in different passages (1663, 1686, 1704, 1715/16). All in all, Leibniz writes:

“C’est
le principe des indiscernables,

en vertu duquel
il ne saurait exister dans la nature deux êtres identiques.

...
Il n’y a point deux individus indiscernables. ”
(see Leibniz, Gottfried Wilhelm, 1886, p. 45)

Exactly in complete compliance with Leibniz, Johann Gottlieb Fichte (1762 - 1814) elaborates on this
subject as follows:

8Aristotle, Prior Analytics, Book II, Part 22, 68a
9Kenneth T. Barnes. Aristotle on Identity and Its Problems. Phronesis. Vol. 22, No. 1 (1977), pp. 48-62 (15 pages)

10Aristotle, Prior Analytics, Book II, Part 22, 68a, p. 511.
11Ivo Thomas. On a passage of Aristotle. Notre Dame J. Formal Logic 15(2): 347-348 (April 1974). DOI: 10.1305/ndjfl/1093891315
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“Each thing is what it is ;
it has those realities which are posited when it is posited,

(A = A.) ”
(Fichte, 1889)

Georg Wilhelm Friedrich Hegel (1770 – 1831) himself objected the Law of Identity by claiming that
“A = A is ... an empty tautology. ”(see Hegel, Georg Wilhelm Friedrich, 1991, p. 413) provided an
example of his own mechanical understanding of the Law of Identity. “the empty tautology: nothing
is nothing; ... from nothing only nothing becomes ... nothing remains nothing. ”(see Hegel, Georg
Wilhelm Friedrich, 1991, p. 84). Nonetheless, Hegel preferred to reformulate an own version of
Leibniz principium identitatis indiscernibilium in his own way by writing that “All things are different,
or: there are no two things like each other. ”(see Hegel, Georg Wilhelm Friedrich, 1991, p. 422).
Much of the debate about identity is still a matter of controversy. This issue has attracted the attention
of many authors and has been discussed by Hegel too. In this context, it is worth to consider Hegel’s
radical position on identity.

“The other expression of the law of identity: A cannot at the same time be A and not-A, has a
negative form; it is called
the law of contradiction. ”

(Hegel, Georg Wilhelm Friedrich, 1991, p. 416)

We may, usefully (see Barukčić, 2019), state Russell’s position with respect to the identity law as
mentioned in his book ‘The problems of philosophy ’ (see Russell, 1912). In particular, according to
Russell,

“...principles have been singled out by tradition under the name of ‘Laws of Thought.’ They are as
follows:

(1) The law of identity: ‘Whatever is,is.
(2)The law of contradiction: ‘Nothing can both be and not be.’

(3) The law of excluded middle: ‘Everything must either be or not be.’
These three laws are samples of self-evident logical principles, but are not really more fundamental
or more self-evident than various other similar principles: for instance, the one we considered just
now, which states that what follows from a true premise is true. The name ‘laws of thought’ is also
misleading, for what is important is not the fact that we think in accordance with these laws, but the

fact that things behave in accordance with them; ”

(see Russell, 1912, p. 113)

Russell’s critique, that we tend too much to focus only on the formal aspects of the ‘Laws of Thoughts’
with the consequence that “... we thing in accordance with these laws” (see Russell, 1912, p. 113) is
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justified. Judged solely in terms of this aspect, it is of course necessary to think in accordance with the
‘Laws of Thoughts’. But this is not the only aspect of the ‘Laws of Thoughts’. The other and may be
much more important aspect of these ‘Laws of Thoughts’is the fact that quantum mechanical objects
or that “... things behave in accordance with them” (see Russell, 1912, p. 113).

5.5.2. Principium contradictionis (Axiom II)

Principium contradictionis or lex contradictionis 12 , 13 , 14 or axiom II, the other of lex identitatis,
the negative of lex identitatis, the opposite of lex identitatis, a complementary of lex identitatis, can be
expressed mathematically as

+0 ≡ 0×1 ≡+1 (544)

In addition to the above, from the point of view of mathematics, axiom II (equation 544) is equally the
most simple mathematical expression and formulation of a contradiction. However, there is too much
practical and theoretical evidence that a lot of ‘secured’mathematical knowledge and rules differ too
generously from real world processes, and the question may be asked whether mathematical truths can
be treated as absolute truths at all. Many of the basic principle of today’s mathematics allow every
single author defining the real world events and processes et cetera in a way as everyone likes it for
himself. Consequentially, a resulting dogmatic epistemological subjectivism and at the end agnosticism
too, after all, is one of the reasons why we should rightly heed the following words of wisdom of Albert
Einstein.

“I don’t
believe in

mathematics.”
(Albert Einstein cited according to Brian, 1996, p. 76)

In the long term, however, the above attitude of mathematics is not sustainable. History has taught us
time and time again that objective reality has the potential to correct wrong human thinking slowly but
surely, and many more than this. Objective reality has demonstrably corrected wrong human thinking
again and again in the past.

12Horn, Laurence R., ”Contradiction”, The Stanford Encyclopedia of Philosophy (Winter 2018 Edition), Edward N. Zalta (ed.), URL
= https://plato.stanford.edu/archives/win2018/entries/contradiction/.

13Barukčić I. Aristotle’s law of contradiction and Einstein’s special theory of relativity. Journal of Drug Delivery and Therapeutics
(JDDT). 15Mar.2019;9(2):125-43. https://jddtonline.info/index.php/jddt/article/view/2389

14Barukčić, Ilija. (2020, December 28). The contradiction is exsiting objectively and real (Version 1). Zenodo.
https://doi.org/10.5281/zenodo.4396106
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Despite all the adversities, it is necessary and crucial to consider that a self-identical as the opposite
of itself is no longer only self-identity but a difference of itself from itself within itself. In other
words, “All things are different, or: there are no two things like each other ... is, in fact, opposed
to the law of identity ...”(see Hegel, Georg Wilhelm Friedrich, 1991, p. 422) Each on its own and
without any respect to the other is distinctive within itself and from itself and not only from another.
As the opposite of its own something, is no longer only self-identity, but also a negation of itself out
of itself and therefore a difference of itself from itself within itself. In other words, in opposition, a
self-identical is able to return into simple unity with itself, with the consequence that even as a self-
identical the same self-identical is inherently self-contradictory. A question of fundamental theoretical
importance is, however, why should something be itself and at the same time the other of itself, the
opposite of itself, not itself? Is something like this even possible at all and if so, why and how? These
and similar questions have occupied many thinkers, including Hegel.

“Something is therefore
alive only in so far as it contains contradiction within it,

and moreover is this power to
hold and endure the contradiction within it. ”

(see Hegel, Georg Wilhelm Friedrich, 1991, p. 440)

However, as directed against identity, contradiction itself is also at the same time a source of self-
changes of a self-identical out of itself.

“... contradiction
is the root of all movement and vitality;

it is only in so far as something has a contradiction within it
that it moves, has an urge and activity. ”

(see Hegel, Georg Wilhelm Friedrich, 1991, p. 439)

The further advance of science will throw any contribution to scientific progress of each of us back
into scientific insignificance, as long as principium contradictionis is not given enough and the right
attention. The contradiction 15 is existing objectively and real and is the heartbeat of every self-
identical. We have reason to be delighted by the fact that very different aspects of principium con-
tradictionis have been examined since centuries from different angles by various authors. According
to Aristotle, principium contradictionis applies to everything that is, it is the first and the firmest of all
principles of philosophy.

15Barukčić, Ilija. (2020, December 28). The contradiction is existing objectively and real (Version 1). Zenodo.
https://doi.org/10.5281/zenodo.4396106
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“... the same ... cannot at the same time belong and not belong to the same
... in the same respect ... This, then, is

the most certain of all principles ”

(see Aristotle, of Stageira (384-322 B.C.E), 1908, Metaph., IV, 3, 1005b, 16–22)

Principium contradictionis or axiom II has many facets. As long as we follow Leibniz in this re-
gard, we should consider that “Le principe de contradiction est en general ... ”(Leibniz, 1765, p.
327). Scientist inevitably have false beliefs and make mistakes. In order to prevent scientific results
from falling into logical inconsistency or logical absurdity, it is necessary to posses among other the
methodological possibility to start a reasoning with a (logical) contradiction too. However and in con-
trast to the way of reasoning with inconsistent premises as proposed by para-consistent (Carnielli and
Marcos, 2001, da Costa, 1974, 1958, Priest, 1998, Priest et al., 1989, Quesada, 1977) and other logic,
in the absence of technical and other errors of reasoning, the contradiction itself need to be preserved.
In other words, from a contradiction does not anything follows but the contradiction itself while
the theoretical question is indeed justified “What is so Bad about Contradictions? ” (Priest, 1998).
Historically, the principle of (deductive) explosion (Carnielli and Marcos, 2001, Priest, 1998, Priest
et al., 1989), coined by 12th-century French philosopher William of Soissons, demand us to accept that
anything, including its own negation, can be proven or can be inferred from a contradiction. In short,
according to ex falso sequitur quodlibet, a (logical) contradiction implies anything. Respecting the
principle of explosion, the existence of a contradiction (or the existence of logical inconsistency) in a
scientific theorem, rule et cetera is disastrous. However, the historical development of science shows
that scientist inevitably revise the theories, false positions and claims are identified once and again, and
we all make different kind of mistakes. In order to avert disproportionately great damage to science
and to prevent reducing science into pure subjective belief, a negation of the principle of explosion is
required. Nonetheless, a justified negation of the ex contradictione quodlibet principle (Carnielli
and Marcos, 2001) does not imply the correctness of para consistent logic (Carnielli and Marcos,
2001, da Costa, 1974, 1958, Priest, 1998, Priest et al., 1989, Quesada, 1977) as such as advocated es-
pecially by the Peruvian philosopher Francisco Miró Quesada (Quesada, 1977) and other (Carnielli
and Marcos, 2001, da Costa, 1974, 1958, Priest, 1998, Priest et al., 1989). In general, scientific theories
appear to progress from lower and simpler to higher and more complex levels. However, high level
theories cannot be taken for granted because high level theories are grounded on a lot of assumptions,
definitions and other procedures and may rest upon too much erroneous stuff even if still not identified.
Therefore, it should be considered to check at lower at simpler levels like with like.
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5.5.2.1. Zero power zero

Theorem 37 (Erroneous operation zero power zero). In general, the relationship

+0+2 ≡+0 (545)

is false.

Proof by modus inversus. The premise

+0 ≡+1 (546)

is false. In the following, any rearrangement of the premise which is free of (technical) errors, need to
end up at a contradiction. In other words, the contradiction will be preserved. We obtain

+0×+0 ≡+1×+0 (547)

Equation 547 becomes

+0+2 ≡+0 (548)

□

5.5.2.2. Zero divided by zero

Theorem 38 (Erroneous division by zero). In general, the relationship

1
0
≡ 0

0
(549)

is false.

Proof by modus inversus. If the premise

+1 ≡+0 (550)

is false, then the relationship

1
0
≡ 0

0
(551)

is also false.

□
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5.5.3. Principium negationis (Axiom III)

Lex negationis or axiom III, is often mismatched with simple opposition. However, from the point
of view of philosophy and other sciences, identity, contradiction, negation and similar notions are
equally mathematical descriptions of the most simple laws of objective reality. What sort of natural
process is negation at the end? Mathematically, we define principium negationis or lex negationis or
axiom III as

Negation(0) ×0 ≡ ¬(0)×0 ≡+1 (552)

where ¬ denotes (logical (Boole, 1854) or natural) negation (Ayer, 1952, Förster and Melamed,
2012, Hedwig, 1980, Heinemann, Fritz H., 1943, Horn, 1989, Koch, 1999, Kunen, 1987, Newstadt,
2015, Royce, 1917, Speranza and Horn, 2010, Wedin, 1990). In this context, there is some evidence
that

Negation(1) ×1 ≡ ¬(1)×1 = 0 (553)

Logically, it follows that
Negation(1) ≡ 0 (554)

In the following we assume that axiom I is universal. Under this assumption, the following theorem
follows inevitably.

Theorem 39 (Zero divided by zero). According to classical logic, it is

0
0
≡ 1 (555)

Proof by direct proof. The premise

1 ≡ 1 (556)

is true. It follows that

0 ≡ 0
≡ 0×1

(557)

In the following, we rearrange the premise (see equation 552, p. 138). We obtain

0× (Negation(0) ×0)≡ 0 (558)

Equation 558 changes slightly (see equation 553, p. 138). It is

(Negation(1) ×1)× (Negation(0) ×0)≡ 0 (559)

Equation 559 demands that

(Negation(1) )× (Negation(0) )×0 ≡ 0 (560)
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Equation 560 is logically possible (see equation 543, p. 130) only if

(Negation(1) )× (Negation(0) )≡ 1 (561)

(see theorem 37, equation 545) whatever the meaning of Negation(1) or of Negation(0) might be,
equation 561 demands that

Negation(0) ≡ 1
Negation(1)

(562)

and that

Negation(1) ≡ 1
Negation(0)

(563)

Equation 562 simplifies as (see equation 554, p. 138)

Negation(0) ≡ +1
Negation(1)

≡ +1
+0

(564)

It follows that
¬(0)×0 ≡ 1

0
×0 ≡ 0

0
≡ 1 (565)

To bring it to the point. Classical logic, assumed as generally valid, demands that

0
0
≡ 1 (566)

□

Concepts like identity, difference, negation, opposition et cetera engaged the attention of scholars
at least over the last twenty-three centuries (see also Horn, 1989, Speranza and Horn, 2010). As
long as we first and foremost follow Josiah Royce, negatio or negation “is one of the simplest and
most fundamental relations known to the human mind. For the study of logic, no more important
and fruitful relation is known.” (see also Royce, 1917, p. 265) But, do we really know what, for
sure, what negation is? Based on what we know about negation, Aristotle (see also Wedin, 1990)
has been one of the first to present a theory of negation, which can be found in discontinuous chunks
in his works the Metaphysics, the Categories, De Interpretatione, and the Prior Analytics (see also
Horn, 1989, p. 1). Negation (see also Newstadt, 2015) as a fundamental philosophical concept
found its own very special melting point especially in Hegel’s dialectic and is more than just a formal
logical process or operation which converts true to false or false to true. Negation as such is a natural
process too and equally ‘an engine of changes of objective reality ” (see also Barukčić, 2019).
However, it remains an open question to establish a generally accepted link between this fundamental
philosophical concept and an adequate counterpart in physics, mathematics and mathematical statistics
et cetera. Especially the relationship between creation and conservation or creatio ex nihilio (see
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also Donnelly, 1970, Ehrhardt, 1950, Ford, 1983), determination and negation (see also Ayer, 1952,
Hedwig, 1980, Heinemann, Fritz H., 1943, Kunen, 1987) has been discussed in science since ancient
(see also Horn, 1989, Speranza and Horn, 2010) times too. Why and how does an event occur or why
and how is an event created (creation), why and how does an event maintain its own existence over
time (conservation)? The development of the notion of negation leads from Aristotle to Meister Eckhart
(see also Eckhart, 1986) von Hochheim (1260-1328), commonly known as Meister Eckhart (see also
Tsopurashvili, 2012) or Eckehart, to Spinoza (1632 – 1677), to Immanuel Kant (1724-1804) and finally
to Georg Wilhelm Friedrich Hegel (1770-1831) and other authors too. One point is worth being noted,
even if it does not come as a surprise, it was especially Benedict de Spinoza (1632 – 1677) as one of the
philosophical founding fathers of the Age of Enlightenment who addressed the relationship between
determination and negation in his lost letter of June 2, 1674 to his friend Jarig Jelles (see also Förster
and Melamed, 2012) by the discovery of his fundamental insight that “ determinatio negatio est”
(see also Spinoza, 1674, p. 634). Hegel went even so far as to extended the slogan raised by Spinoza
into to “Omnis determinatio est negatio” (see also Hegel, Georg Wilhelm Friedrich, 1812b, 2010, p.
87). Finally, it did not take too long, and the notion of negation entered the world of mathematics
and mathematical logic at least with Boole’s (see also Boole, 1854) publication in the year 1854.
“Let us, for simplicity of conception, give to the symbol x the particular interpretation of men, then
1 - x will represent the class of ’not-men’.” (see also Boole, 1854, p. 49). Finally, the philosophical
notion negation found its own way into physics by the contributions of authors like Woldemar Voigt
(see Voigt, 1887), George Francis FitzGerald (see FitzGerald, 1889), Hendrik Antoon Lorentz (see
Lorentz, 1892, 1899), Joseph Larmor (see Larmor, 1897), Jules Henri Poincaré (see Poincaré, 1905)
and Albert Einstein (see Einstein, 1905b) by contributions to the physical notion “Lorentz factor”.
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sal, Baden Württemberg, Germany is the mathematization of
the relationship between a cause and an effect valid without
any restriction under any circumstances including the condi-
tions of classical logic, probability theory, quantum mechan-
ics, special and general theory of relativity, human medicine
et cetera. I endeavour to investigate positions of quantum me-
chanics, relativity theory, mathematics et cetera, only insofar
as these positions put into question or endanger the general
validity of the principle of causality.

ahttps://orcid.org/0000-0002-6988-2780
bhttps://cel.webofknowledge.com/InboundService.do?app=wos&

product=CEL&Func=Frame&SrcApp=Publons&SrcAuth=Publons_CEL&

locale=en-US&SID=F4r5Tsr3OcrmFbYrqiF&customersID=Publons_CEL&

smartRedirect=yes&mode=FullRecord&IsProductCode=Yes&Init=Yes&

action=retrieve&UT=WOS%3A000298855300006
chttps://publons.com/researcher/3501739/ilija-barukcic/
dhttps://www.scopus.com/authid/detail.uri?authorId=

37099674500
ehttps://www.scopus.com/authid/detail.uri?authorId=

54974181600
fhttps://www.mendeley.com/search/?authorFullName=Ilija%

20Baruk%C4%8Di%C4%87&page=1&query=Barukcic&sortBy=relevance
ghttps://www.researchgate.net/profile/Ilija-Barukcic-2
hhttps://zenodo.org/search?page=1&size=20&q=keywords:

%22Baruk%C4%8Di%C4%87%22&sort=mostviewed
ihttps://zenodo.org/search?page=1&size=20&q=keywords:

%22Baruk%C4%8Di%C4%87,%20Conference%22
jhttps://twitter.com/ilijabarukcic?lang=de
khttps://twitter.com/Causation_Journ
lhttps://vixra.org/author/ilija_barukcic

mhttps://www.youtube.com/channel/UCwf3w1IngcukIOOjpw8HTwg
nhttps://portal.dnb.de/opac/showNextResultSite?

currentResultId=%22Barukcic%22%26any&currentPosition=30

CAUSATION ISSN: 1863-9542 https://www.doi.org/10.5281/zenodo.7316360 Volume 18, Issue 4, 5–141

http://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0002-6988-2780
 https://cel.webofknowledge.com/InboundService.do?app=wos&product=CEL&Func=Frame&SrcApp=Publons&SrcAuth=Publons_CEL&locale=en-US&SID=F4r5Tsr3OcrmFbYrqiF&customersID=Publons_CEL&smartRedirect=yes&mode=FullRecord&IsProductCode=Yes&Init=Yes&action=retrieve&UT=WOS%3A000298855300006 
 https://cel.webofknowledge.com/InboundService.do?app=wos&product=CEL&Func=Frame&SrcApp=Publons&SrcAuth=Publons_CEL&locale=en-US&SID=F4r5Tsr3OcrmFbYrqiF&customersID=Publons_CEL&smartRedirect=yes&mode=FullRecord&IsProductCode=Yes&Init=Yes&action=retrieve&UT=WOS%3A000298855300006 
 https://cel.webofknowledge.com/InboundService.do?app=wos&product=CEL&Func=Frame&SrcApp=Publons&SrcAuth=Publons_CEL&locale=en-US&SID=F4r5Tsr3OcrmFbYrqiF&customersID=Publons_CEL&smartRedirect=yes&mode=FullRecord&IsProductCode=Yes&Init=Yes&action=retrieve&UT=WOS%3A000298855300006 
 https://cel.webofknowledge.com/InboundService.do?app=wos&product=CEL&Func=Frame&SrcApp=Publons&SrcAuth=Publons_CEL&locale=en-US&SID=F4r5Tsr3OcrmFbYrqiF&customersID=Publons_CEL&smartRedirect=yes&mode=FullRecord&IsProductCode=Yes&Init=Yes&action=retrieve&UT=WOS%3A000298855300006 
 https://cel.webofknowledge.com/InboundService.do?app=wos&product=CEL&Func=Frame&SrcApp=Publons&SrcAuth=Publons_CEL&locale=en-US&SID=F4r5Tsr3OcrmFbYrqiF&customersID=Publons_CEL&smartRedirect=yes&mode=FullRecord&IsProductCode=Yes&Init=Yes&action=retrieve&UT=WOS%3A000298855300006 
https://publons.com/researcher/3501739/ilija-barukcic/
https://www.scopus.com/authid/detail.uri?authorId=37099674500
https://www.scopus.com/authid/detail.uri?authorId=37099674500
https://www.scopus.com/authid/detail.uri?authorId=54974181600
https://www.scopus.com/authid/detail.uri?authorId=54974181600
 https://www.mendeley.com/search/?authorFullName=Ilija%20Baruk%C4%8Di%C4%87&page=1&query=Barukcic&sortBy=relevance 
 https://www.mendeley.com/search/?authorFullName=Ilija%20Baruk%C4%8Di%C4%87&page=1&query=Barukcic&sortBy=relevance 
 https://www.researchgate.net/profile/Ilija-Barukcic-2 
https://zenodo.org/search?page=1&size=20&q=keywords:%22Baruk%C4%8Di%C4%87%22&sort=mostviewed
https://zenodo.org/search?page=1&size=20&q=keywords:%22Baruk%C4%8Di%C4%87%22&sort=mostviewed
 https://zenodo.org/search?page=1&size=20&q=keywords:%22Baruk%C4%8Di%C4%87,%20Conference%22 
 https://zenodo.org/search?page=1&size=20&q=keywords:%22Baruk%C4%8Di%C4%87,%20Conference%22 
https://twitter.com/ilijabarukcic?lang=de
 https://twitter.com/Causation_Journ 
https://vixra.org/author/ilija_barukcic
https://www.youtube.com/channel/UCwf3w1IngcukIOOjpw8HTwg
https://portal.dnb.de/opac/showNextResultSite?currentResultId=%22Barukcic%22%26any&currentPosition=30
https://portal.dnb.de/opac/showNextResultSite?currentResultId=%22Barukcic%22%26any&currentPosition=30
https://portal.issn.org/resource/ISSN/1863-9542
https://www.doi.org/10.5281/zenodo.7316360

	Introduction
	Material and methods
	Material
	Methods
	Basic definitions of special theory of relativity
	Extended definitions of special theory of relativity
	Basic definitions of theory of general relativity


	Results
	Energy, time and space   
	Theorem. Energy and space
	Theorem. Time and space
	Theorem. There is no third between energy and time
	Theorem. Matter and gravitational field
	Theorem. Time and wave function  

	Theorem. The scalar form of the Ricci tensor   
	Theorem. The relationship between the scalar S and the dimension of space-time D
	Theorem. The relationship between variable X and the Ricci scalar R   
	Theorem. The scalar form of Ricci tensor   
	Theorem. The relationship between the entity S and the Ricci scalar R   
	Theorem. Einstein manifolds and scalar S 

	The geometrical structure of the stress-energy tensor of matter
	Theorem. The scalar E of the stress-energy tensor of matter
	Theorem. The scalar form of the stress-energy tensor of matter
	Theorem. Quantisation of the stress energy tensor of matter

	The geometrical structure of the four basic fields of nature
	The scalar theories of gravitation
	Theorem. The geometrical structure of the fields of nature  
	Theorem. The geometrical structure of the fields of nature  
	Theorem. The geometrical structure of the fields of nature  
	Theorem. The geometrical structure of the fields of nature  

	The basic field of nature  
	Theorem. The geometrical structure of the basic field of nature  

	The basic field of nature  
	Theorem. The geometrical structure of the basic field of nature  
	Theorem. The geometrical structure of the basic field of nature  

	The basic field of nature  
	Theorem. The geometrical structure of the basic field of nature  
	Theorem. The geometrical structure of the basic field of nature  
	Theorem. The geometrical structure of the basic field of nature  
	Theorem. The determination of  

	The basic field of nature  
	Theorem. The geometrical structure of the basic field of nature  
	Theorem. The geometrical structure of the field of nature  
	Theorem. The geometrical structure of the field of nature  
	 The geometrical structure of stress energy tensor of the electromagnetic field  

	The evolution or self-organisation of objective reality
	Objective reality without ordinary matter
	Objective reality under conditions of D=1 dimension
	Objective reality under conditions of D=2 dimension

	The generally covariant Planck-Einstein relation 
	Theorem. Frequency and Einstein field equations
	Theorem. The generally covariant form of the Planck-Einstein relation 

	Quantum gravity and Schrödinger's wave equation
	Theorem. Quantum gravity and Schrödinger's wave equation  

	Measurement of space-time dimensions

	Discussion
	Conclusion
	Tensor Algebra
	Tensor addition
	Anti tensor I
	Anti tensor II
	Anti tensor III
	Tensor subtraction
	Symmetric and anti symmetric tensors
	  

	Extended tensor algebra
	Zero tensor
	The negation of one
	Unity tensor
	The negation of zero
	The tensor of the number 2
	Speed of the light tensor
	Archimedes' constant tensor
	Newton's constant tensor
	Planck's constant tensor
	Dirac's constant tensor
	The commutative multiplication of tensors
	The tensor double dot product on the closest indices
	The tensor double dot product on the non-closest indices
	The division of tensors
	The exponentiation of a tensor to the power n
	The exponentiation of a tensor to the power 1/n
	The expectation value of a co-variant second rank tensor
	The expectation value of a second rank anti tensor
	The expectation value of a second rank tensor raised to rower 2
	The variance of a tensor
	The co-variance of two tensors

	Einstein's theory of special relativity
	Einstein's general theory or relativity
	Axioms
	Principium identitatis (Axiom I)
	Principium contradictionis (Axiom II)
	Principium negationis (Axiom III)



