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Abstract

Background:

It seems like that the more is published on a single medical issue, the more it is difficult to obtain
a clear, logically consistent and comprehensive information on the given medical topic. This is one
of the reasons, why it is necessary to apply stringent standards and rigorous and strict study design
criteria.

Methods:

In spite of all the differences, the various types of studies have at least one thing in common: find
out, what is truth?

Results:

The impact of study design on necessary conditions and on sufficient conditions has been re-
investigated. The design of a study investigating necessary or sufficient condition should ensure as
much as possible an index of unfairness as near as possible to 0.

Conclusion:

Investigations of necessary or sufficient conditions require an index of unfairness equal to 0.

Keywords: Study design; Index of unfairness; Conditions; Cause; Effect; Causal relationship
k; Causality; Causation

1. Introduction

Often, medical research studies are used to look at factors or exposures which might potentially be
related with diseases or outcomes. In point of fact, several types of studies are known but commonly
divided into experimental studies (randomized clinical trials or randomized control trials (RCT)) and
observational studies (i.e. cross-sectional; case-control and cohort studies). Nonetheless, each study
design has both advantages and disadvantages. In an randomized clinical trials 1 or randomized control
trials, an experimental group gets the treatment/exposure (verum group or intervention group). In con-
trast to the intervention group, the control group of a randomized clinical trial receives no treatment or
a placebo treatment (placebo group) or another standard of care treatment. The effect of an intervention

1Munnangi S, Boktor SW. Epidemiology Of Study Design. 2022 Apr 28. In: StatPearls [Internet]. Treasure Island (FL): StatPearls
Publishing; 2022 Jan–. PMID: 29262004.
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is assessed. Observational or retrospective or case-control studies 2 are used to establish a relationship
between exposures and outcomes, but are of minor importance in order to establish causation. There-
fore, when investigating a certain research issue, a researcher should put a lot of effort in the choice of
an appropriate study type and on several aspect of the design of a medical study. Theoretically, let us
investigate a certain research question for the sake of the argument only by an observational study and
equally by an experimental study under optimal and perfectly ideal conditions. After the investigations
are finished, we compare the results of the experimental study with the results of the observational
study. Theoretically, it appears to be highly doubtful whether research results obtained by these two
studies are allowed to differ or to deviate from one another. In addition, a relationship between an
event A and another event B, assumed that the same is given in reality, is existing independently of any
study design. Therefore, even if the impact of (an inappropriate) study design on the results of medical
research cannot be ignored, it is not the study design itself which determines a relationship between
certain events. It is therefore more than reasonable to demand that the design of a study must ensure
that different studies on a single topic can be compared with each other. Especially, independent of
any type of a study, different studies should be able to achieve the same research results on the same
single topic. The question immediately arises and must be asked, under what conditions can the design
of a study ensure comparability of studies independently of the type of a study, including repeatability,
reproducibility, safety et cetera?

2. Material and methods

Scientific knowledge and objective reality are more than only interrelated. It cannot be repeated
often enough that objective reality or processes of objective reality is the foundation of any scientific
knowledge. Our human experience teaches us however that seen by light, grey is never merely simply
grey, and looked at from different angles, many paths may lead to climb up a certain mountain. In
general, it is appropriate to ensure as much as possible a broader consideration of a research question
and to take into account the different facets and viewpoints of an issue investigated in order to reach a
goal.

2Tenny S, Kerndt CC, Hoffman MR. Case Control Studies. 2022 Mar 28. In: StatPearls [Internet]. Treasure Island (FL): StatPearls
Publishing; 2022 Jan–. PMID: 28846237.
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2.1. Methods

Definitions should help us to provide and assure a systematic approach to a scientific issue. It also
goes without the need of further saying that a definition as such need to be logically consistent and
correct.

2.1.1. Random variables

As highlighted especially by Albert Einstein (1879-1955) and his coworkers Boris Yakovlevich
Podolsky (1896-1966) and Nathan Rosen (1909-1995), “... objective reality ... is independent of any
theory ... ”3 (see Einstein et al., 1935, p. 777), objective reality is independent of any observer and
of any perceiving subject, objective reality is independent of any measurements. Let us carry this point
to epistemological extremes, objective reality is existing independently and outside of human mind
and consciousness. However, in its own self-sameness objective reality is different from a random
variable too and self-contradictory. Nonetheless, in its difference, in its own contradiction, a random
variable itself is self-identical and is in its own self a transition of itself into the other of itself and
vice versa. Lastly, a random variable as such is in its own self the opposite of itself. More or less, a
random variable is in its own self the unity of identity and difference and finds its own completion in
the determinate relationship of self-identity and difference. A random variable as such is in its own
self self-identical and different. This has at least a twofold aspect, identity and difference constitute the
determinations of a random variable itself. These two moments of a random variable which are merely
different in one and the same identity are constituting as moments of difference the determinations
of an opposition too. A self-identical and a different constitute equally the interior nature of itself in
relation to one another. The self-identical, determined with reference to an otherness, has within itself
the reference-to-other which is the determinateness of the self-identical itself. The difference contains
within itself the reference to its non-being, to identity, and vice versa. Identity contains within itself
the reference to its non-being, to difference. However, a random variable as such is itself and its other
and the identity of difference with itself is at the end a self-reference too. Consequently, a random
variable as such has its own determinateness not in an other, but in its own self, it is self-referred,
while the reference to its other manifests itself as a self-reference. The other of itself which a random
variable as such contains is also the non-being of that in which it is supposed to be contained only as a
moment. A random variable as such therefore is, only in so far as its non-being is, and is in an identical
relationship with it. The moments of a random variable are different in one and the same identity and
as moments of difference are constituting the determinations of an opposition. Closer consideration
shows that a random variable as such is only in so far as the same contains a reference to its non-being,
to its own other moment (i.e. local hidden variable). A self-identical which is equally a different too is
thus far determining an opposition as such. While the one is not as yet self-identical, the other is not
as yet different. However, both are different to one another. Nonetheless, the indifference of a random
variable as such towards another random variable distinguished from the same has no influence on the
fact that a random variable as such is in its own self the unity of identity and difference. At the end, a

3Einstein, A; B Podolsky; N Rosen (1935-05-15). ”Can Quantum-Mechanical Description of Physical Reality be Considered
Complete?” (PDF). Physical Review. 47 (10): 777–780. DOI:https://doi.org/10.1103/PhysRev.47.777
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random variable as such is, only in so far as the other is; it is what it is, through the other, through its
own non-being. A random variable is, in so far as the other is not; it is what it is, through the non-being
of its own other.

The notion something is widely taken for granted as a foundation of axioms, theorems and theories.
But, very broadly put, there are many different kinds of very concrete, single entities with real world
implications. Thus far, what is something, what is its own other? In the most general way, there are
circumstances where something and its own other existing independently and outside of human mind
and consciousness is described mathematically by the notion random variable. Let a random variable
(Gosset, 1914) X denote something like a function defined on a probability space, which itself maps
from the sample space (Neyman and Pearson, 1933) to the real numbers.

2.1.1.1. The Expectation of a Random Variable

Definition 2.1 (The First Moment Expectation of a Random Variable). Summaries of an entire
distribution of a random variable (see Kolmogorov, Andreı̆ Nikolaevich, 1950, p. 22 ) X, such as
the expected value, or average value, are useful in order to identify where X is expected to be without
describing the entire distribution. For practical and other reasons, we shall limit ourselves here to
discrete random variables, while the basic properties of the expectation value of a random variable
X will not be investigated. Thus far, let X be a discrete random variable with the probability p(X).
The relationship between the first moment expectation value (see Huygens and van Schooten, 1657,
Kolmogorov, Andreı̆ Nikolaevich, 1950, LaPlace, 1812, Whitworth, 1901) of X, denoted by E(X), and
the probability p(X), is given by the equation:

E (X)≡ X× p(X)

≡Ψ(X)×X×Ψ
* (X)

(1)

where Ψ(X) is the wave-function (see Born, 1926, Schrödinger, Erwin Rudolf Josef Alexander,
1926) of X, Ψ* (X) is the complex conjugate wave-function of X. Under conditions where p(X)≡+1
equation 1 (see p. 9) becomes

E (X)≡ X (2)

but not general. The first moment expectation value squared of a random variable X follows as

E (X)2 ≡ p(X)×X× p(X)×X

≡ p(X)× p(X)×X×X

≡ (p(X)×X)2

≡ E (X)×E (X)

(3)

The ongoing progress with artificial intelligence has the potential to transform human society far be-
yond any imaginable border of human recognition and can help even to solve problems that otherwise
would not be tractable. No wonder, scientist and systems are confronted with large volumes of data
(big data) of various natures and from different sources. The use of tensor technology can simplify and
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accelerate Big data analysis. In other words, let Xklµν . . . denote an n-th index co-variant tensor with
the probability p(Xklµν . . . ). The first moment expectation value (see Huygens and van Schooten,
1657, Kolmogorov, Andreı̆ Nikolaevich, 1950, LaPlace, 1812, Whitworth, 1901) of Xklµν . . . , denoted
by E(Xklµν . . . ), is a number defined as follows:

E
(
Xklµν . . .

)
≡ p

(
Xklµν . . .

)
×Xklµν . . . ≡ p

(
Xklµν . . .

)
∩Xklµν . . . (4)

while × or ∩ might denote the commutative multiplications of tensors. The first moment expectation
value squared of a random variable X follows as

2E
(
Xklµν . . .

)
≡ p

(
Xklµν . . .

)
×Xklµν . . . × p

(
Xklµν . . .

)
×Xklµν . . .

≡ p
(
Xklµν . . .

)
× p

(
Xklµν . . .

)
×Xklµν . . . ×Xklµν . . .

≡ 2 (p
(
Xklµν . . .

)
×Xklµν . . .

)
≡ E

(
Xklµν . . .

)
×E

(
Xklµν . . .

) (5)

Definition 2.2 (The Second Moment Expectation of a Random Variable). The second (see Kol-
mogorov, Andreı̆ Nikolaevich, 1950, p. 42 ) moment expectation value (or more or less arithmetic
mean) of a (large) number of independent realizations of a random variable X follows as:

E
(
X2)≡ p(X)×X2

≡ (p(X)×X)×X

≡ E (X)×X

≡ X×E (X)

(6)

From the point of view of tensor algebra it is

E
(

2Xklµν . . .

)
≡ p

(
Xklµν . . .

)
× 2Xklµν . . .

≡
(

p
(
Xklµν . . .

)
×Xklµν . . .

)
×Xklµν . . .

≡ E
(
Xklµν . . .

)
×Xklµν . . .

≡ Xklµν . . . ×E
(
Xklµν . . .

) (7)

Definition 2.3 (The n-th Moment Expectation of a Random Variable). The n-th (see Barukčić,
2020a, 2021c) moment expectation value of a (large) number of independent realizations of a random
variable X follows as:

E (Xn)≡ p(X)×Xn

≡ (p(X)×X)×Xn-1

≡ E (X)×Xn-1

(8)
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2.1.1.2. Probability of a Random Variable What is the nature of the probability of an event, or
what is the relationship between probability and geometry or between the probability of an event and
notions like false or true. At a first pass, various authors answer this question, one way or another.
For authors like De Morgan, probability is only a degree of confidence, or credences or of belief. “By
degree of probability, we really mean, or ought to mean, degree of belief” (see De Morgan, 1847,
p. 172). Such a purely subjective (or personalist or Bayesian (see Bayes, 1763)) interpretation of
probabilities as degrees of confidence, or credences finds its own scientific opposition, moreover, in
Kolmogorov’s axiomatization of probability theory. However, perhaps we can do better, then, to think
that Kolmogorov’s axiomatization of probability theory is the last word spoken on probability theory.
Nobody seriously considers that Kolmogorov’s conceptual apparatus of probability theory has solved
the basic problem of any probability theory, the relationship between classical logic or geometry and
probability theory. One very massive disadvantage of Kolmogorov’s axiomatization of probability
theory is that it is very silent especially on this issue. Any unification of geometry and probability
theory into one unique mathematical framework might prove very difficult as long as we rely purely on
Kolmogorov’s understanding of probability theory. It’s not surprising that the probability of an event
bear at least directly, and sometimes indirectly, upon central philosophical and scientific concerns. A
correct understanding of probability is one of the most important foundational scientific problems.
Now let us strengthen our position with respect to the probability of an event. In our understanding,
the probability of an event is something objectively and real. The probability of an event is the truth
value of something or the degree to which something, i.e. a random variable X, is determined by its
own expectation value. The probability p(X) of a random variable X follows as (see equation 1)

p(X)≡ X× p(X)

X
≡ E (X)

X
≡ p(X)

≡ X×X× p(X)

X×X
≡ X×E (X)

X×X
≡

E
(
X2)

X2

≡ E (X)

X
≡ E (X)×E (X)

X×E (X)
≡ E (X)2

E (X2)

≡ E (X)

X
≡ E (X)×E (X)

X×E (X)
≡ σ (X)2

X×X× (1− p(X))
≡ σ (X)2

E (X2)

≡Ψ(X)×Ψ
* (X)

(9)

where Ψ(X) is the wave-function of X, Ψ* (X) is the complex conjugate wave-function of X. As soon
as the probability p(X) of an event X is determined, the probability of its own other, 1 - p(X), the
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complementary of X, the opposite of X, anti X, is determined too. We obtain

1− p(X)≡ 1− X× p(X)

X
≡ 1− E (X)

X
≡ X

X
− E (X)

X
≡ X−E (X)

X
≡ E (X)

X
≡ p(X)

≡ 1− X×X× p(X)

X×X
≡ 1− X×E (X)

X×X
≡ 1−

E
(
X2)

X2 ≡ X2

X2 −
E
(
X2)

X2 ≡
X2−E

(
X2)

X2

≡ 1− E (X)

X
≡ 1− E (X)×E (X)

X×E (X)
≡ 1− E (X)2

E (X2)

≡ 1− E (X)

X
≡ 1− E (X)×E (X)

X×E (X)
≡ 1− σ (X)2

X×X× (1− p(X))
≡ 1− σ (X)2

E (X2)

≡ 1−Ψ(X)×Ψ
* (X)

(10)
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2.1.1.3. Variance of a Random Variable

Definition 2.4 (The Variance of a Random Variable). Johann Carl Friedrich Gauß (1777-1855) in-
troduced the normal distribution and the error of mean squared in his 1809 monograph (see Gauß,
Carl Friedrich, 1809). In the following, Karl Pearson (1857-1936) coined the term “standard de-
viation”in 1893. Pearson is writing: “Then σ will be termed its standard-deviation (error of mean
square).” (see Pearson, 1894, p. 80). Finally, the term variance was introduced by Sir Ronald Aylmer
Fisher (1890-1962) in the year 1918.

“The ... deviations of a ... measurement from its mean ... may be ... measured by the standard
deviation corresponding to the square root of the mean square error ... It is ... desirable in
analysing the causes ... to deal with the square of the standard deviation as the measure of

variability. We shall term this quantity the Variance... ”

(see Fisher, Ronald Aylmer, 1919, p. 399)

The deviation of a random variable X from its population mean or sample mean E(X) has a central
role in statistics and is one important measure of dispersion. The variance σ(X)2 (see Kolmogorov,
Andreı̆ Nikolaevich, 1950, p. 42 ), the second central moment of a distribution, is the expectation value
of the squared deviation of a random variable X from its own expectation value E(X) and is determined
in general as (see equation 6):

σ (X)2 ≡ E
(
X2)−E (X)2

≡ (X×E (X))−E (X)2

≡ E (X)× (X−E (X))

≡ E (X)×E (X)

(11)

while E (X)≡ X−E (X). From the point of view of tensor algebra, it is

2
σ
(
Xklµν . . .

)
≡ E

(
2Xklµν . . .

)
− 2E

(
Xklµν . . .

)
≡
(
Xklµν . . . ×E

(
Xklµν . . .

))
− 2E

(
Xklµν . . .

)
≡ E

(
Xklµν . . .

)
×
(
Xklµν . . . −E

(
Xklµν . . .

))
≡ E

(
Xklµν . . .

)
×E

(
Xklµν . . .

) (12)

while E
(
Xklµν . . .

)
≡ Xklµν . . . − E

(
Xklµν . . .

)
. As demonstrated by equation 12, variance depends

not just on the expectation value of what has actually been observed E
((

Xklµν . . .
))

, but also on the
expectation value that could have been observed but were not

(
E
(
Xklµν . . .

))
). There are circumstances

in quantum mechanics where this fact is called the local hidden variable. Even if his might strike us
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as peculiar, variance 4 is primarily a mathematical method which is of use in order to evaluate specific
hypotheses in the light of some empirical facts. However, as a mathematical tool or method, variance
is also a scientific description of a certain part of objective reality too. In this context, as a general
mathematical principle, one fundamental meaning of variance is to provide a logically consistent link
between something and its own other, between X and anti X.

“The variance in this sense is a measure of the inner contradictions of a random variable, of
changes, of struggle within this random variable itself, or the greater σ (X)2 of a random variable,

the greater the inner contradictions of this random variable. ”

(see Barukčić, 2006a, p. 57)

All things considered, we can safely say that, on the whole, the variance is a mathematical descrip-
tion of the philosophical notion of the inner contradiction of a random variable X (see Hegel,
Georg Wilhelm Friedrich, 1812a, 1813, 1816) . Based on equation 11, it is

E
(

X2
)
≡ E (X)2 +σ (X)2 (13)

or
E (X)2

E (X2)
+

σ (X)2

E (X2)
≡ p(X)+

σ (X)2

E (X2)
≡+1 (14)

In other words, the variance (see Barukčić, 2006b) of a random variable is a determining part of the
probability of a random variable. The wave function Ψ follows in general, as

Ψ(X)≡ 1
Ψ* (X)

− σ (X)2

(Ψ* (X)×E (X2))

≡
(
E
(
X2)−σ (X)2)

(Ψ* (X)×E (X2))

≡ 1
(Ψ* (X)×E (X2))

×
(

E
(

X2
)
−σ (X)2

)
≡ 1

(Ψ* (X)×E (X2))
×E (X)2

≡ 1
Ψ* (X)

× E (X)2

E (X2)

≡ 1
Ψ* (X)×X

×E (X)

(15)

The wave function (see Born, 1926) of a quantum-mechanical system is a central determining
part of the Schrödinger wave equation (see Schrödinger, Erwin Rudolf Josef Alexander, 1926, 1929,
1952).

4Romeijn, Jan-Willem, ”Philosophy of Statistics”, The Stanford Encyclopedia of Philosophy (Spring 2022 Edition), Edward N.
Zalta (ed.), forthcoming URL = https://plato.stanford.edu/archives/spr2022/entries/statistics/.
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Definition 2.5 (The First Moment Expectation of a Random Variable of X (anti X)). In general,
let E (X) be defined as

E (X)≡ X−E (X)≡ X− (X× p(X))≡ X× (+1− p(X)) (16)

and denote an expectation value of a (discrete) random variable anti X with the probability

p(X)≡ 1− p(X) (17)

The first moment expectation value (see Huygens and van Schooten, 1657, Kolmogorov, Andreı̆
Nikolaevich, 1950, LaPlace, 1812, Whitworth, 1901) of anti X, denoted as E(X), is a number defined
as follows:

E (X)≡ X− (X× p(X))≡ X× (1− p(X))≡ X× p(X) (18)

The first moment expectation value squared of a random variable anti X follows as

E (X)2 ≡ p(X)×X× p(X)×X

≡ p(X)× p(X)×X×X

≡ (p(X)×X)2

≡ E (X)×E (X)

(19)

Definition 2.6 (The Second Moment Expectation of a Random Variable of X (anti X)). The sec-
ond (see Kolmogorov, Andreı̆ Nikolaevich, 1950, p. 42 ) moment expectation value (or more or less
arithmetic mean) of a (large) number of independent realizations of a random variable anti X follows
as:

E
(
X2)≡ p(X)×X2

≡ (p(X)×X)×X

≡ E (X)×X

≡ X×E (X)

(20)

Definition 2.7 (The n-th Moment Expectation of a Random Variable of X (anti X)). The n-th (see
Barukčić, 2020a, 2021c) moment expectation value of a (large) number of independent realizations of
a random variable anti X follows as:

E (Xn)≡ p(X)×Xn

≡ (p(X)×X)×Xn-1

≡ E (X)×Xn-1

(21)

Definition 2.8 (The Co-Variance of a Random Variable). Sir Ronald Aylmer Fisher (1890 -1962)
introduced the term covariance (see Bailey, 1931) in the year 1930 in his book as follows:
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“It is obvious too that where a considerable fraction of the variance is contributed by chance
causes, the variance of any group of individuals will be inflated in comparison with the covariances

between related groups ... ”

(see Fisher, Ronald Aylmer, 1930, p. 195)

In general, the co-variance is defined as given by equation 22.

σ (X ,Y )≡ E (X ,Y )− (E (X)×E (Y )) (22)

From the point of view of tensor algebra, it is

σ
(
Xklµν . . . ,Y klµν . . .

)
≡ E

(
Xklµν . . . ,Y klµν . . .

)
−
(
E
(
Xklµν . . .

)
×E

(
Y klµν . . .

))
(23)

2.1.2. Bernoulli distribution

A single event distribution is more or less a discrete probability distribution of any random variable
X which takes a certain (observer independent) single value Xt at a Bernoulli trial (Uspensky, 1937,
p. 45) (period of time) t with the probability p(Xt). The same random variable X takes a certain single
anti value Xt at a Bernoulli trial (period of time) t with the probability 1-p(Xt). There are conditions
in nature where a random variable X can take only the values either +0 or +1 (see Birnbaum, 1961).
Under these conditions, the random variable X takes the value 1 with probability p(Xt = +1) and
the value 0 with probability q(X t = +0) = 1− p(X t = +1) while the single event distribution passes
over into the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli (Bernoulli,
1713). Less formally, many times, the Bernoulli distribution is represented by a (possibly not biased)
coin toss where 1 and 0 would represent ‘heads’and ‘tails’(or vice versa), respectively. However, the
relationship between random variables (Gosset, 1914) can be investigated by many (Gosset, 1908)
methods, including the tools of probability theory, too.

Definition 2.9 (Two by two table of single event random variables).

The two by two or contingency table which has been introduced by Karl Pearson (Pearson, 1904b)
in 1904 harbours still a large variety of topics and debates. Central to this is the problem to apply the
laws of classical logic on data sets, which concerns the justification of inferences which extrapolate
from sample data to general facts. Nevertheless, a contingency table is still an appropriate theoretical
model too for studying the relationships between random variables, including Bernoulli (Bernoulli,
1713) (i.e. +0/+1) distributed random variables existing or occurring at the same Bernoulli trial
(Uspensky, 1937) (period of time) t.

In this context, let a random variable A at the Bernoulli trial (Uspensky, 1937) (period of time) t,
denoted by At, indicate a risk factor, a condition, a cause et cetera and occur or exist with the probability
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p(At) at the Bernoulli trial (Uspensky, 1937) (period of time) t. Let E(At) denote the expectation value
of At. In general it is

p(At)≡ p(at)+ p(bt) (24)

The expectation value E(At) follows as

E (At)≡ At× p(At)

≡ At× (p(at)+ p(bt))

≡ (At× p(at))+(At× p(bt))

≡ E (at)+E (bt)

(25)

Under conditions of +0/+1 distributed Bernoulli random variables it is

E (At)≡ At× p(At)

≡ (+0+1)× p(At)

≡ p(At)

≡ p(at)+ p(bt)

(26)

Furthermore, it is
p(At)≡ p(ct)+ p(dt)≡ (1− p(At)) (27)

The expectation value E(At) is given as

E (At)≡ At× (1− p(At))

≡ At× (p(ct)+ p(dt))

≡ (At× p(ct))+(At× p(dt))

≡ E (ct)+E (dt)

(28)

Under conditions of +0/+1 distributed Bernoulli random variables we obtain

E (At)≡ At× (1− p(At))

≡ (+0+1)× (1− p(At))

≡ (1− p(At))

≡ p(ct)+ p(dt)

(29)

Let a random variable B at the Bernoulli trial (Uspensky, 1937) (period of time) t, denoted by Bt,
indicate an outcome, a conditioned, an effect et cetera and occur or exist with the probability p(Bt) at
the Bernoulli trial (Uspensky, 1937) (period of time) t. Let E(Bt) denote the expectation value of Bt.
In general it is

p(Bt)≡ p(at)+ p(ct) (30)

The expectation value E(Bt) is given by the equation

E (Bt)≡ Bt× p(Bt)

≡ Bt× (p(at)+ p(ct))

≡ (Bt× p(at))+(Bt× p(ct))

≡ E (at)+E (ct)

(31)
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Under conditions of +0/+1 distributed Bernoulli random variables it is

E (Bt)≡ Bt× p(Bt)

≡ (+0+1)× p(Bt)

≡ p(Bt)

≡ p(at)+ p(ct)

(32)

Furthermore, it is
p(Bt)≡ p(bt)+ p(dt)≡ (1− p(Bt)) (33)

The expectation value E(Bt) is given by the equation

E (Bt)≡ Bt× (1− p(Bt))

≡ Bt× (p(bt)+ p(dt))

≡ (Bt× p(bt))+(Bt× p(dt))

≡ E (bt)+E (dt)

(34)

Under conditions of +0/+1 distributed Bernoulli random variables it is

E (Bt)≡ Bt× (1− p(Bt))

≡ (+0+1)× (1− p(Bt))

≡ (1− p(Bt))

≡ p(bt)+ p(dt)

(35)

Let p(at)= p(At ∧ Bt) denote the joint probability distribution of At and Bt at the same Bernoulli
trial (period of time) t. In general, it is

E (at)≡ E (At∧Bt)

≡ (At×Bt)× p(At∧Bt)

≡ (At×Bt)× p(at)

(36)

Under conditions of +0/+1 distributed Bernoulli random variables, it is

E (at)≡ E (At∧Bt)

≡ (At×Bt)× p(At∧Bt)

≡ ((+0+1)× (+0+1))× p(At∧Bt)

≡ p(At∧Bt)

≡ p(at)

(37)

Let p(bt)= p(At ∧ ¬Bt) denote the joint probability distribution of At and not Bt at the same Bernoulli
trial (period of time) t. In general, it is

E (bt)≡ E (At∧¬Bt)

≡ (At×¬Bt)× p(At∧¬Bt)

≡ (At×¬Bt)× p(bt)

(38)
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Under conditions of +0/+1 distributed Bernoulli random variables, it is

E (bt)≡ E (At∧¬Bt)

≡ (At×¬Bt)× p(At∧¬Bt)

≡ ((+0+1)× (+0+1))× p(At∧¬Bt)

≡ p(At∧¬Bt)

≡ p(bt)

(39)

Let p(ct)= p(¬ At ∧ Bt) denote the joint probability distribution of not At and Bt at the same Bernoulli
trial (period of time) t. In general, it is

E (ct)≡ E (¬At∧Bt)

≡ (¬At∧Bt)× p(¬At∧Bt)

≡ (¬At∧Bt)× p(ct)

(40)

Under conditions of +0/+1 distributed Bernoulli random variables, it is

E (ct)≡ E (¬At∧Bt)

≡ (¬At×Bt)× p(¬At∧Bt)

≡ ((+0+1)× (+0+1))× p(¬At∧Bt)

≡ p(¬At∧Bt)

≡ p(ct)

(41)

Let p(dt)= p(¬At ∧ ¬Bt) denote the joint probability distribution of not At and not Bt at the same
Bernoulli trial (period of time) t. In general, it is

E (dt)≡ E (¬At×¬Bt)

≡ (¬At×¬Bt)× p(¬At∧¬Bt)

≡ (¬At×¬Bt)× p(dt)

(42)

Under conditions of +0/+1 distributed Bernoulli random variables, it is

E (dt)≡ E (¬At∧¬Bt)

≡ (¬At×¬Bt)× p(¬At∧¬Bt)

≡ ((+0+1)× (+0+1))× p(¬At∧¬Bt)

≡ p(¬At∧¬Bt)

≡ p(dt)

(43)

In general, it is
p(at)+ p(bt)+ p(ct)+ p(dt)≡+1 (44)

Table 1 provide us with an overview of the definitions above.

In our understanding, it is

p(Bt)+ p(Λt)≡ p(at)+ p(ct)+ p(Λt)≡ p(at)+ p(bt)≡ p(At) (45)
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Table 1. The two by two table of Bernoulli random variables

Conditioned Bt
TRUE FALSE

Condition TRUE p(at) p(bt) p(At)
At FALSE p(ct) p(dt) p(At)

p(Bt) p(Bt) +1

or

p(ct)+ p(Λt)≡ p(bt) (46)

Under conditions of Einstein’s general theory of relativity, Λ denotes the Einstein cosmological (Ein-
stein, 1917) ‘constant ’.

2.1.3. Binomial and Anti-binomial distribution

The binomial (see Pearson, 1895, p. 351) distribution (see Cramér, 1937) with parameters n and
p has been developed by the Swiss mathematician Jakob Bernoulli (1655-1705) in a proof published
in his 1713 book Ars Conjectandi (see Bernoulli, 1713) Part 1. In probability theory and statistics, the
probability of getting exactly k successes in n independent Bernoulli trials is given by the probability
mass function as

p(X t = k)≡
(

n
k

)
× pk×qn−k (47)

while is
(n

k

)
= n!

k!(n−k)! the binomial coefficient. The Anti-binomial distribution, the other or the com-
plementary of a Binomial distribution, denoted as p(X t = k) is given as:

p(X t = k) = 1− p(X t = k)≡ 1−
(

n
k

)
× pk×qn−k (48)

The variance of a Binomial distributed event is given as

σ (k)2 ≡ k× k× p(k)× p(k)

≡ (k)× (k)×
((

n
k

)
× pk×qn−k

)
×
(

1−
((

n
k

)
× pk×qn−k

)) (49)

The relationship between Binomial distribution and Anti-binomial distribution is illustrated by fig. 1
and fig. 2 in more detail.

As known, the cumulative distribution function is given as

p(X t ≤ k)≡ 1− p(X t > k)≡
k

∑
t=0

(
n
t

)
· pt ·qn−t (50)
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Halved standard normal distributionBinomial distribution (n = 25, p = 0.15)

Figure 1. Binomial distribution.

Halved standard normal distributionAnti binomial distribution (n = 25, p = 0.15)

Figure 2. Anti-binomial dis.

or as

p(X t > k)≡ 1− p(X t ≤ k)≡ 1−
k

∑
t=0

(
n
t

)
· pt ·qn−t (51)

Furthermore, it is

p(X t < k)≡ 1− p(X t ≥ k)≡
k−1

∑
t=0

(
n
t

)
· pt ·qn−t (52)

or

p(X t ≥ k)≡ 1− p(X t < k)≡ 1−
k−1

∑
t=0

(
n
t

)
· pt ·qn−t (53)

The binomial distribution is the mathematical foundation of a binomial test. The random variable Xt
is counting for different things. The discrete geometric (see Feller, 1950, p. 61) distribution describes
under certain circumstances the number of Bernoulli trials needed to get one success. The probability
that the first occurrence of success requires k independent trials, each with success probability p, is
given by the equation

p(X t = k)≡ p ·qk−1 (54)

The negative (see Fisher, 1941, Haldane, 1941) binomial probability is a discrete probability dis-
tribution which defines the number of successes (k) in a sequence of independent and identically dis-
tributed Bernoulli trials (n) before a specified (non-random) number of failures (denoted r) occurs. The
probability mass function of the negative binomial distribution is

p(X t = r)≡
(

k+ r−1
k−1

)
pk ·qr (55)

where k is the number of successes, r is the number of failures, and p is the probability of success.

Definition 2.10 (Expectation value and variance of a binomial random variable).

The variance(see Pearson, 1904a, p. 66) of a binomial distributed random variable with parameters
n, the number of independent experiments each asking a yes–no question and p, the probability of a
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single event, is defined in contrast to Pearson (see Barukčić, 2022c) as

σ (X t)
2 ≡ N×N× p(X t)× (1− p(X t)) (56)

Definition 2.11 (Two by two table of Binomial random variables).

Let a, b, c, d, A, A, B, and B denote expectation values. Under conditions where the probability of
an event, an outcome, a success et cetera is constant from Bernoulli trial to Bernoulli trial t, it is

A = N×E (At)

≡ N× (At× p(At))

≡ N× (p(At)+ p(Bt))

≡ N× p(At)

(57)

and

B = N×E (Bt)

≡ N× (Bt× p(Bt))

≡ N× (p(At)+ p(ct))

≡ N× p(Bt)

(58)

where N might denote the population or even the sample size. Furthermore, it is

a≡ N× (E (At))≡ N× (p(At)) (59)

and
b≡ N× (E (Bt))≡ N× (p(Bt)) (60)

and
c≡ N× (E (ct))≡ N× (p(ct)) (61)

and
d ≡ N× (E (dt))≡ N× (p(dt)) (62)

and
a+b+ c+d ≡ A+A≡ B+B≡ N (63)

Table 2 provide us again an overview of a two by two contingency (see also Pearson, 1904b, p. 33)
table of Binomial random variables.
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Table 2. The two by two table of Binomial random variables

Conditioned Bt
TRUE FALSE

Condition TRUE a b A
At FALSE c d A

B B N

“Such a table is termed a contingency table, and the ultimate scientific statement of description of the relation between two things

can always be thrown back upon such a contingency table · · · Once the reader realizes the nature of such a table, he will have

grasped the essence of the conception of association between cause and effect, and the nature of its ideal limit in causation. ”

(see also Pearson, 1911, p. 159)

2.1.4. Poisson and Anti-Poisson distribution

The Poisson distribution (see also Poisson, 1829, pp. 261-262) is a discrete distribution (with k
= 0, 1, 2, 3, ...) which depends on λ , the mean number of occurrences expected (see also Poisson
and Poisson, 1837, pp. 205) while there is no specified number n of possible tries. The probability of
a given number of events occurring in a fixed interval of time or space under the condition that these
events occur with a known constant mean rate and independently of the time since the last event, is
calculated as

p(k) =
(

λ k

k!

)
× e−λ (64)

Cavalry men being killed by a kick of a horse (see also von Bortkiewitsch, 1898) is a famous example
of Poisson distribution. The Anti-Poisson distribution, the other of the Poisson distribution or the
complementary of the Poisson distribution, denoted as p(k) is given as

p(k) = 1− p(k) = 1−
(

λ k

k!

)
× e−λ (65)

The variance of a Poisson distributed event is given as

σ (k)2 ≡ k× k× p(k)× p(k)

≡ (k)× (k)×
((

λ k

k!

)
× e−λ

)
×
(

1−
((

λ k

k!

)
× e−λ

)) (66)

The relationship between the Poisson distribution and the Anti Poisson distribution is illustrated by fig.
3 and fig. 4 in more detail.

Bombing of London during World War II by Germans
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Poisson distribution ( with E( k ) = 4)

Figure 3. Poisson distribution.

Halved standard normal distributionAnti-Poisson distribution ( with E( k ) = 4)

Figure 4. Anti-poisson dis.

During World War II, London was bombed 5 , 6 by Germans. In order to determine (Clarke,
1946), whether the Germans were bombing London randomly or could target specific areas, London
was divided into a grid consisting of 576 equal squares, each square of area 0.25 square kilometres.
The number of squares with k = 0, 1, ... bombs that landed in each grid square was counted. Over the
period considered, the total number of bombs within the area of London involved was 537. The data
are illustrated by fig. 3.

Table 3. Bombing of London during World War II by Germans

Number of flying bombs Observed number Expected number
per square (k) of squares of squares (Poisson)

0 229 226.74
1 211 211.39
2 93 98.54
3 35 30.62
4 7 7.14

5 and over 1 1.57

576 576

The closeness of fit with the Poisson distribution is obvious and has been tested by the χ̃2 goodness
of fit test.

5Clarke, R. D. (1946). An application of the Poisson distribution. Journal of the Institute of Actuaries, 72(3), 481-481.
6Clarke, R. D. (1946). An application of the Poisson distribution. Journal of the Institute of Actuaries, 72(3), 481-481.
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Standard normal (also called Gauss or bell-curved) distribution

x

p(
 x

 )

E(x) = 0.   σ(x)2=1

Figure 5. Normal distribution

Normal distribution
with
E( x ) = 0
and
σ ( x )2 = 1

2.1.5. Normal and Anti-normal distribution

The origins of the normal distribution, also known as the Gaussian distribution, the second law of
Laplace, the law of error et cetera, has been studied at least since the 18th century and can be traced
back even to a French mathematician Abraham de Moivre. Johann Carl Friedrich Gauß’s (1777-1855)
presented 1809 the normal distribution (see Gauß, Carl Friedrich, 1809, p. 244) while illustrating the
method of least squares. In the following, Karl Pearson (1857-1936) popularised a new name for Gauß
distribution. Pearson wrote: “A frequency-curve, which for practical purposes, can be represented by
the error curve, will for the remainder of this paper be termed a normal curve.” (see Pearson, 1894, p.
72).

p(RX t) =

(
1√

2π×σ(RX t)2

)
e
−
(RX t−E(RX t))

2

2×σ(RX t)2
(67)

The standard normal distribution is illustrated by figure 5.

Sir Ronald Aylmer Fisher (1890-1962) 7 , a very influential statistician of the first half of the 20th
century, presented the case of a normal (see Fisher, Ronald Aylmer, 1912, p. 157) distribution with
non-zero mean (see Fisher, Ronald Aylmer, 1920, p. 758) as a typical case. The probability density
function (pdf) of an anti-normal distribution is given as

p(RX t) = 1−

(
1√

2π×σ(RX t)2

)
e
−
(RX t−E(RX t))

2

2×σ(RX t)2
(68)

as illustrated by figure 6. In general, it is

p(RX t)+ p(RX t) = 1 (69)
7R. A. Fisher Digital Archive, The University of Adelaide. 5005 AUSTRALIA. copyright@adelaide.edu.au
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Figure 6. Anti-normal distribution

Anti-normal distribution
with
E( x ) = 0
and
σ ( x )2 = 1

The variance of a Gaussian distributed random variable is given as

σ (RX t)
2 ≡ RX t× RX t× p(RX t)× p(RX t)

≡ RX t× RX t×


(

1√
2π×σ(RX t)2

)
e
−
(RX t−E(RX t))

2

2×σ(RX t)2

×
1−


(

1√
2π×σ(RX t)2

)
e
−
(RX t−E(RX t))

2

2×σ(RX t)2


 (70)

Under conditions where E(RXt) = 0 and σ(RX t)
2 = 1, equation 70 becomes

σ (RX t)
2 ≡ RX t× RX t× p(RX t)× p(RX t)

≡ RX t× RX t×


(

1√
2π×σ(RX t)2

)
e
−
(RX t−E(RX t))

2

2×σ(RX t)2

×
1−


(

1√
2π×σ(RX t)2

)
e
−
(RX t−E(RX t))

2

2×σ(RX t)2




≡ RX t× RX t×

( 1√
2π×1

)
e
−
(RX t−0)2

2×1

×
1−

( 1√
2π×1

)
e
−
(RX t−0)2

2×1




≡ RX t× RX t×

( 1√
2π

)
e
−
(RX t)

2

2

×
1−

( 1√
2π

)
e
−
(RX t)

2

2




(71)

Standard normal distribution

In general, a normal distribution with mean 0 and variance 1 is called the standard normal dis-
tribution. Modern publications often write the density function for the standard normal distribution,
‘bell-shaped curve’, as

p(z) =
(

1√
2π

)
e
−

z2

2 (72)
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Halved standard normal distribution

Figure 7. Normal and anti-normal distribution

Normal and anti-normal
distribution
with
E( x ) = 0
and
σ ( x )2 = 1

The density function for the anti-standard normal distribution is given as

p(z) = 1− p(z) = 1−
(

1√
2π

)
e
−

z2

2 (73)

It is
p(z)+ p(z) = 1 (74)

and is illustrated by figure 7.

Truman Lee Kelley (1884–1961) introduced statistical methods into psychological studies 8 and
defined the z-score (see Kelley, 1924, p. 115). In mathematical statistics, a random variable RXt
is standardised by subtracting its expected value E(RXt) and dividing the difference by its standard
deviation σ (RXt). The z-score or standard score, denoted as z(RXt), is defined as

z(RX t) =
(RX t−E(RX t))

σ(RX t)
(75)

Simply put, a z-score (also called a standard score) describes how many standard deviations a given
quantum mechanical observable or a random variable lies above or below a specific value. Equation
75 changes to

z(RX t)
2 =

(RX t−E(RX t))
2

σ(RX t)2 =
E(RX t)

2

E(RX t)×E(RX t)
=

E(RX t)

E(RX t)
=

RX t× (1− p(RX t))

RX t× p(RX t)
=

(1− p(RX t))

p(RX t)
(76)

Equation 76 simplifies as
E(RX t) = z(RX t)

2×E(RX t) (77)
8McClure WE. Speed and Accuracy of the Feebleminded on Performance Tests. Psychol Clin. 1931 Feb;19(9):265-274. PMID:

28909304; PMCID: PMC5138284.
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We can imagine drawing figure 7 in n dimensions. Under these circumstances we would obtain some-
thing similar to an Einstein–Rosen bridge or Einstein–Rosen wormhole 9 formulated in terms of the
framework of probability theory. Attention should be drawn to circumstances especially of quantum
mechanics, where E( RXt ) indicates something like the expectation value of a ‘local hidden variable ’.
Equation 77 changes slightly. It is

RX t× (1− p(RX t)) = z(RX t)
2×RX t× p(RX t) (78)

and
(1− p(RX t)) = z(RX t)

2× p(RX t) (79)

Equation 79 is rearranged as
1 = z(RX t)

2× p(RX t)+ p(RX t) (80)

or
1 = (z(RX t)

2 +1)× p(RX t) (81)

At the end, it follows that

p(RX t) =
1

z(RX t)2 +1
(82)

From equation 76 follows that

z(RX t)
2 =

(RX t−E(RX t))
2

σ(RX t)2 =
E(RX t)

2

E(RX t)×E(RX t)
=

E(RX t)

E(RX t)
=

E(RX t)×E(RX t)

E(RX t)×E(RX t)
=

σ(RX t)
2

E(RX t)2 (83)

Thus far, it is equally
σ(RX t)

2 = z(RX t)
2×E(RX t)

2 (84)

or
σ(RX t) = z(RX t)×E(RX t) (85)

Per definition, it is

E(RX t) =
σ(RX t)

z(RX t)
(86)

The probability density of a halved normal distribution for positive x is given as

p(RX t) =

(
2√

2π×σ(RX t)2

)
e
−
(RX t−E(RX t))

2

2×σ(RX t)2
(87)

and illustrated by figure 8.

9Cramer JG, Forward RL, Morris MS, Visser M, Benford G, Landis GA. Natural wormholes as gravitational lenses. Phys Rev D
Part Fields. 1995 Mar 15;51(6):3117-3120. doi: 10.1103/physrevd.51.3117. PMID: 10018782.
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Halved standard normal distribution

x

p(
 x

 )

Figure 8. Halved normal distribution

Halved normal distribution
with
E( x ) = 0
and
σ ( x )2 = 1

2.1.6. Independence

Definition 2.12 (Independence).

The philosophical, mathematical(Kolmogoroff, Andreı̆ Nikolaevich, 1933) and physical(Einstein,
1948) et cetera concept of independence is of fundamental(Kolmogoroff, Andreı̆ Nikolaevich, 1933)
importance in (natural) sciences as such. Therefore, it is appropriate to investigate the concept of
independence as completely as possible. In fact, de Moivre sums it up in his book The Doctrine
of Chances (see also Moivre, 1718). “Two Events are independent, when they have no connexion
one with the other, and that the happening of one neither forwards nor obstructs the happening of
the other. Two events are dependent, when they are so connected together as that the Probability
of either’s happening is alter’d by the happening of the other. ”(see also Moivre, 1756, p. 6) We
should consider Kolmogorov’s position on independence before the mind’s eye too. “The concept
of mutual independence of two or more experiments holds, in a certain sense, a central position in
the theory of probability.”(see also Kolmogorov, Andreı̆ Nikolaevich, 1950, p. 8) Furthermore, it is
insightful to recall even Einstein’s theoretical approach to the concept of independence. “Ohne die
Annahme einer · · · Unabhängigkeit der · · · Dinge voneinander · · · wäre physikalisches Denken · · ·
nicht möglich.”(Einstein, 1948). In general, an event At at the Bernoulli trial t need not, but can be
independent of the existence or of the occurrence, of another event Bt at the same Bernoulli trial t. De
Moivre brings it to the point. “From what has been said, it follows, that if a Fraction expresses the
Probability of an Event, and another Fraction the Probability of another Event, and those two Events
are independent ; the Probability that both those Events will Happen, will be the Product of those two
Fractions.”(see also Moivre, 1718, p. 4). Mathematically, in terms of probability theory, independence
(Kolmogoroff, Andreı̆ Nikolaevich, 1933) of events at the same (period of) time (i.e. Bernoulli trial) t
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is defined as

p(At∧Bt)≡ p(At)× p(Bt)≡ p(at)

≡

N
∑

t=1
(At∧Bt)

N
≡ N× (p(at))

N
≡ 1− p(At | Bt)≡ 1− p(At ↑ Bt)

(88)

while p(At∩Bt) is the joint probability of the events At and Bt at a same Bernoulli trial t, p(At) is the
probability of an event At at a same Bernoulli trial t, and p(Bt) is the probability of an event Bt at a
same Bernoulli trial t. With respect to a two-by-two table , under conditions of independence, it is

p(bt)≡ p(At)× p(Bt) (89)

or
p(ct)≡ p(At)× p(Bt) (90)

and
p(dt)≡ p(At)× p(Bt) (91)

Example. In a narrower sense, the conditio sine qua non relationship concerns itself at the end only
with the case whether the presence of an event At (condition) enables or guarantees the presence of
another event Bt (conditioned). Thus far, as a result of the thoughts before, another question worth
asking concerns the relationship between the independence of an event At (a condition) and another
event Bt (conditioned) and the necessary condition relationship. To be confronted with the danger of
bias and equally with the burden of inappropriate conclusions drawn, another fundamental question
at this stage is whether is it possible that an event At (a condition) is a necessary condition of event
Bt (conditioned) even under circumstances where the event At (a condition) (a necessary condition) is
independent of an event Bt (conditioned)? Meanwhile, this question is more or less already answered
to the negative (Barukčić, 2018b). An event At which is a necessary condition of another event Bt
is equally an event without which another event (Bt) could not be, could not occur, and implies as
such already a kind of dependence. However, it is not mandatory that such a kind of dependence is a
causal one. It is remarkable that data which provide evidence of a significant conditio sine qua non
relationship between two events like At and Bt and equally support the hypothesis that At and Bt
are independent of each other are more or less self-contradictory and of very restricted or of none
value for further analysis. In fact, if the opposite view would be taken as plausible, contradictions
are more or less inescapable.

2.1.7. Dependence

Definition 2.13 (Dependence).

Whilst it may be true that the occurrence of an event At does not affect the occurrence of an other
event Bt the contrary is of no minor importance. Under these other conditions, events, trials and
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random variables et cetera are dependent on each other too. The dependence of events (Barukčić,
1989, p. 57-61) is defined as

p

At∧Bt∧Ct∧ . . .︸                 ︷︷                 ︸
n random variables

≡
n

√
p(At)× p(Bt)× p(Ct)× . . .︸                                 ︷︷                                 ︸

n random variables

(92)
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2.1.8. Sensitivity and specificity

Definition 2.14 (Sensitivity and specificity).

A (medical) test should measure what is supposed to measure. However, the extent to which a
test measures what it is supposed to measure varies and is seldom equal to 100 %. In other words, it
is necessary to check once and again the accuracy or the validity of a test, we have to fight it out in
detail. In clinical practice, the concept of sensitivity and specificity is commonly used to quantify the
diagnostic ability of a (medical) test. Sensitivity and specificity were introduced by the American 10 ,

11 , 12 , 13 biostatistician Jacob Yerushalmy (see also Yerushalmy, 1947) in the year 1947. The interior
logic of sensitivity and specificity is best illustrated using a conventional two- by-two (2 x 2) table (see
table 4).

Table 4. Sensitivity and specificity

Disease Bt
present absent

Test positive a (true positive) b (false positive) A
At negative c (false negative) d (true negative) A

B B N

The ability of a positive test (At) to correctly classify an individual as diseased (Bt) is defined as the
proportion of true positives that are correctly identified by the test (a) divided by the individuals being
truly diseased (Bt). In general, sensitivity follows as

Sensitivity(A | B)≡ p(a | B)≡ a
B

(93)

The specificity of a test is the ability of a negative test (At) to correctly classify an individual as not
diseased (Bt and is defined as the proportion of true negative that are correctly identified by the test (d)
divided by the individuals being truly not diseased (Bt). In general, specificity is given by the equation

Speci f icity(A,B)≡ p(d | B)≡ d
B

(94)

The positive predictive value (PPV) is defined as

PPV (A,B)≡ a
a+b

(95)

10Yerushalmy Jacob. Statistical problems in assessing methods of medical diagnosis, with special reference to X-ray techniques.
Public Health Rep. 1947 Oct 3;62(40):1432-49. PMID: 20340527.

11Galen RS, Gambino SR. Beyond normality-the predictive value and efficiency of medical diagnosis. New York: NY:Wiley; 1975.
12Altman DG, Bland JM. Diagnostic tests. 1: Sensitivity and specificity. BMJ. 1994 Jun 11;308(6943):1552. doi:

10.1136/bmj.308.6943.1552. PMID: 8019315; PMCID: PMC2540489.
13Parikh R, Mathai A, Parikh S, Chandra Sekhar G, Thomas R. Understanding and using sensitivity, specificity and predictive values.

Indian J Ophthalmol. 2008 Jan-Feb;56(1):45-50. doi: 10.4103/0301-4738.37595. PMID: 18158403; PMCID: PMC2636062.
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The negative predictive value (NPV) is defined as

NPV (A,B)≡ d
c+d

(96)

Example.

The importance of sensitivity and specificity in any research should certainly not be underestimated.
However, it is essential not to lose sight of the major advantages and limitations 14 of these measures.
In the following, in order to avoid misconceptions about sensitivity, specificity et cetera, let us consider
a test with a sensitivity of 95 % and a specificity of 95 %. A two-by-two table is used as an illustration
(see table 5).

Table 5. Sensitivity and specificity

Disease Bt
present absent

Test positive 95 5 100
At negative 5 95 100

100 100 200

Sensitivity is calculated as

Sensitivity(A | B)≡ p(a | B)≡ 100× a
B
≡ 95

100
≡ 95% (97)

There are at least two kinds of medical tests, diagnostic tests and screening tests. Depending on the
type of medical test, there are other logical implications. A screening test should correctly identify
all people who suffer from a certain disease or all people with a certain outcome. Therefore, the
sensitivity of a screening test should be at best 100 %. Under these conditions, we obtain without
positive test no disease/outcome present. However, confusion should be avoided with regard to the
adequacy and usefulness of the sensitivity of a screening test. The sensitivity of a test does not take into
account events which are false positive (b) or which are true negative (d), the meaning of these events
is ignored completely by sensitivity. Therefore, sensitivity is blind on one eye since its inception and
underestimates the extent to which a screening test is able to identify the likely presence of a condition
of interest. We calculated a 95 % sensitivity while the true possibility of the test to detect a disease is
(see table 5)

SINE (A,B)≡ 100× a+b+d
N

≡ 95+5+95
200

≡ 97.5% (98)

In a way similar to sensitivity, specificity is not much better. Diagnostic tests are able to identify people
who do not have a certain condition. Specificity is calculated as

Speci f icity(A | B)≡ p(d | B)≡ 100× d
B
≡ 95

100
≡ 95% (99)

14Trevethan R. Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities, and Pitfalls in Research and Practice. Front
Public Health. 2017 Nov 20;5:307. doi: 10.3389/fpubh.2017.00307. PMID: 29209603; PMCID: PMC5701930.
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However, specificity does not take into account any individuals who suffer from a disease, who do have
the condition and is well-known for being imperfect because of this fact too. Specificity underestimates
the possibility of a diagnostic test to detect a disease. Above, the specificity has been calculated as
being 95 %. In point of fact, the ability of the test to detect a disease or the relationship if test positive
then disease present is much better and has to be calculated as (see table 5)

IMP(A,B)≡ a+ c+d
N

≡ 95+5+95
200

≡ 97.5% (100)

As can be seen, the test detected the disease in 97.5 % while specificity allows only 95 %. How
valuable is such a measure epistemologicallly? Measures like sensitivity and specificity are blurring
of the issue, do risk leading us astray and disorient us systematically again and again. These measures
should be abandoned.
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2.1.9. Odds ratio (OR)

Definition 2.15 (Odds ratio (OR)).

Odds ratios as an appropriate measure for estimating the relative risk have become widely used in
medical reports of case-control studies. The odds ratio(Fisher, 1935, p. 50) is defined(Cox, 1958) as
the ratio of the odds of an event occurring in one group with respect to the odds of its occurring in
another group. Odds(Yule and Pearson, 1900, p. 273) ratio (OR) is a measure of association which
quantifies the relationship between two binomial distributed random variables (exposure vs. outcome)
and is related to Yule’s (Yule and Pearson, 1900, p. 272) Q(Yule, 1912, p. 585/586). Two events At
and Bt are regarded as independent if (At,Bt) = 1. Let

at = number of persons exposed to At and with disease Bt

bt = number of persons exposed to At but without disease Bt

ct = number of persons unexposed At but with disease Bt

dt = number of persons unexposed At: and without disease Bt

at+ct = total number of persons with disease Bt (case-patients)

bt+dt = total number of persons without disease Bt (controls).

Hereafter, consider the table 6. The odds’ ratio (OR) is defined as

Table 6. The two by two table of random variables

Conditioned/Outcome Bt
TRUE FALSE

Condition/Exposure TRUE at bt At
At FALSE ct dt At

Bt Bt Nt

OR(At,Bt)≡
(

at

bt

)
/

(
ct

dt

)
≡
(

at×dt

bt× ct

) (101)

Remark 2.1. Odds ratios can support logical fallacies and cause difficulties in drawing logically
consistent conclusions. The chorus of voices is growing, which demand the immediate ending(Knol,
2012, Sackett, DL and Deeks, JJ and Altman, DG, 1996) of any use of Odds ratio.

Under conditions where (b = 0), the measure of association odds ratio will collapse, because we
need to divide by zero, as can be seen at eq. 101. However, according to today’s rules of mathematics,
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a division by zero is neither allowed nor generally accepted as possible. It does no harm to remind
ourselves that in the case b = 0 the event At is a sufficient condition of Bt. In other words, odds ratio is
not able to recognize elementary relationships of objective reality. In fact, it would be a failure not to
recognize how dangerous and less valuable odds ratio is.

Under conditions where (c = 0) odds ratio collapses too, because we need again to divide by zero,
as can be seen at eq. 101. However, and again, today’s rules of mathematics don’t allow us a division
by zero. In point of fact, in the case c = 0 it is more than necessary to point out that At is a necessary
condition of Bt. In other words, odds ratio or the cross-product ratio is not able to recognize elementary
relationships of nature like necessary conditions. We can and need to overcome all the epistemological
obstacles as backed by odds ratio entirety. Sooner rather than later, we should give up this measure of
relationship completely.
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2.1.10. Relative risk (RR)

2.1.10.1. Relative risk (RRnc)

Definition 2.16 (Relative risk (RRnc)).

The degree of association between the two binomial variables can be assessed by a number of
very different coefficients, the relative (Cornfield, 1951, Sadowsky et al., 1953) risk is one(Barukčić,
2021d) of them. In general, relative risk RRnc, which provides some evidence of a necessary condition,
is defined as

RR(At,Bt)nc ≡

p(at)

p(At)

p(ct)

p(NotAt)

≡ p(at)× p(NotAt)

p(ct)× p(At)

≡ N× p(at)×N× p(NotAt)

N× p(ct)×N× p(At)

≡ at× (NotAt)

ct×At

≡ EER(At,Bt)

CER(At,Bt)

(102)

That what scientist generally understand by relative risk is the ratio of a probability of an event
occurring with an exposure versus the probability of an event occurring without an exposure. In other
words,

relative risk = (probability(event in exposed group)) / (probability(the same event in not ex-
posed group)).

A RR(At,Bt) = +1 means that exposure does not affect the outcome or both are independent of each
other while RR(At,Bt) less than +1 means that the risk of the outcome is decreased by the exposure.
In this context, an RR(At,Bt) greater than +1 denotes that the risk of the outcome is increased by
the exposure. Widely known problems with odds ratio and relative risk are already documented in
literature.

2.1.10.2. Relative risk (RR (sc))

Definition 2.17 (Relative risk (RR (sc))).
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The relative risk (sc), which provides some evidence of a sufficient condition, is calculated from the
point of view of an outcome and is defined as

RR(At,Bt)sc ≡

p(at)

p(Bt)

p(bt)

p(NotBt)

≡ p(at)× p(NotBt)

p(bt)× p(Bt)

≡ N× p(at)×N× p(NotBt)

N× p(bt)×N× p(Bt)

≡ at× (NotBt)

bt×Bt

≡ OPR(At,Bt)

CPR(At,Bt)

(103)

2.1.10.3. Relative risk reduction (RRR)

Definition 2.18 (Relative risk reduction (RRR)).

RRR(At,Bt)≡
CER(At,Bt)−EER(At,Bt)

CER(At,Bt)

= 1−RR(At,Bt)

(104)

2.1.10.4. Vaccine efficacy (VE)

Definition 2.19 (Vaccine efficacy (VE)).

Vaccine efficacy is defined as the percentage reduction of a disease in a vaccinated group of people
as compared to an unvaccinated group of people.

V E (At,Bt)≡ 100× (1−RR(At,Bt))

≡ 100×
(

CER(At,Bt)−EER(At,Bt)

CER(At,Bt)

)
(105)

CAUSATION ISSN: 1863-9542 https://www.doi.org/10.5281/zenodo.6816088 Volume 18, Issue 1, 5–99

https://portal.issn.org/resource/ISSN/1863-9542
https://www.doi.org/10.5281/zenodo.6816088


39

Historically, vaccine efficacy has been designed to evaluate the efficacy of a certain vaccine by
Greenwood and Yule in 1915 for the cholera and typhoid vaccines(Greenwood and Yule, 1915) and best
measured using double-blind, randomized, clinical controlled trials. However, the calculated vaccine
efficacy is depending too much on the study design, can lead to erroneous conclusions and is only of
very limited value.

2.1.10.5. Experimental event rate (EER)

Definition 2.20 (Experimental event rate (EER)).

EER(At,Bt)≡
p(at)

p(At)
=

at

at +bt
(106)

Definition 2.21 (Control event rate (CER)).

CER(At,Bt)≡
p(ct)

p(At)
=

ct

ct +dt
(107)

2.1.10.6. Absolute risk reduction (ARR)

Definition 2.22 (Absolute risk reducation (ARR)).

ARR(At,Bt)≡
p(ct)

p(At)
− p(at)

p(At)

=
ct

ct +dt
− at

at +bt

=CER(At,Bt)−EER(At,Bt)

(108)

2.1.10.7. Absolute risk increase (ARI)

Definition 2.23 (Absolute risk increase (ARI)).

ARI (At,Bt)≡
p(at)

p(At)
− p(ct)

p(At)

= EER(At,Bt)−CER(At,Bt)

(109)
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2.1.10.8. Number needed to treat (NNT)

Definition 2.24 (Number needed to treat (NNT)).

NNT (At,Bt)≡
1

CER(At,Bt)−EER(At,Bt)
(110)

An ideal number needed to treat(Cook and Sackett, 1995, Laupacis et al., 1988), mathematically the
reciprocal of the absolute risk reduction, is NNT = 1. Under these circumstances, everyone improves
with a treatment, while no one improves with control. A higher number needed to treat indicates more
or less a treatment which is less effective.

2.1.10.9. Number needed to harm (NNH)

Definition 2.25 (Number needed to harm (NNH)).

NNH (At,Bt)≡
1

EER(At,Bt)−CER(At,Bt)
(111)

The number needed to harm (Massel and Cruickshank, 2002), mathematically the inverse of the
absolute risk increase, indicates at the end how many patients need to be exposed to a certain factor, in
order to observe a harm in one patient that would not otherwise have been harmed.

2.1.10.10. Outcome prevalence rate (OPR)

Definition 2.26 (Outcome prevalence rate (OPR)).

OPR(At,Bt)≡
p(at)

p(Bt)
=

at

at + ct
(112)

2.1.10.11. Control prevalence rate (CPR)

Definition 2.27 (Control prevalence rate (CPR)).

CPR(At,Bt)≡
p(bt)

p(Bt)
=

bt

bt +dt
(113)

Bias and confounding is present to some degree in all research. In order to assess the relationship of
exposure with a disease or an outcome, a fictive control group (i.e. of newborn or of young children et
cetera) can be of use too. Under certain circumstances, even a CPR = 0 is imaginable.
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2.1.10.12. Absolute prevalence reduction (APR)

Definition 2.28 (Absolute prevalence reduction (APR)).

APR(At,Bt)≡CPR(At,Bt)−OPR(At,Bt) (114)

2.1.10.13. Absolute prevalence increase (API)

Definition 2.29 (Absolute prevalence increase (API)).

API (At,Bt)≡ OPR(At,Bt)−CPR(At,Bt) (115)

2.1.10.14. Relative prevalence reduction (RPR)

Definition 2.30 (Relative prevalence reduction (RPR)).

RPR(At,Bt)≡
CPR(At,Bt)−OPR(At,Bt)

CPR(At,Bt)

= 1−RR(At,Bt)sc

(116)

2.1.10.15. The index NNS

Definition 2.31 (The index NNS).

NNS (At,Bt)≡
1

CPR(At,Bt)−OPR(At,Bt)
(117)

Mathematically, the index NNS is the reciprocal of the absolute prevalence reduction.

2.1.10.16. The index NNI

Definition 2.32 (The index NNI).

NNI (At,Bt)≡
1

OPR(At,Bt)−CPR(At,Bt)
(118)

Mathematically, the index NNI is the reciprocal of the absolute prevalence increase.
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2.1.11. Index of relationship (IOR)

Definition 2.33 (Index of relationship (IOR)).

Due to several reasons, it is not always easy to identify the unique characteristics between two
events like At and Bt. And more than that, it is difficult to decide what to do, and much more difficult
to know in which direction one should think and which decision is right. Sometimes it is helpful to
know at least something about the direction of the relationship between two events like At and Bt.
Under conditions where p(at) = p(At∧Bt), the index of relationship(Barukčić, 2021b), abbreviated as
IOR, is defined as

IOR(At,Bt)≡
(

p(At∧Bt)

p(Bt)× p(At)

)
−1

≡
(

p(at)

p(Bt)× p(At)

)
−1

≡
((

N×N× p(at)

N× p(Bt)×N× p(At)

)
−1
)

≡
((

N×a
A×B

)
−1
)

(119)

where p(At) denotes the probability of an event At at the Bernoulli trial t and p(Bt) denotes the
probability of another event Bt at the same Bernoulli trial t while p(at) denotes the joint probability of
p(At AND Bt) at the same Bernoulli trial t and a, A and B may denote the expectation values.

Definition 2.34 (Multi dimensional index of relationship (NIOR)).

The multi dimensional index of relationship (NIOR) is defined as

NIOR(At,Bt)≡
(

Nk× p(1At∧ 2At · · ·kAt)

N× (p(1At))N× (p(2At)) · · ·N× (p(kAt))

)
−1

≡
(

Nk-1×E(1At∧ 2At · · ·kAt)

E (1At)×E (2At) · · ·×E (kAt)

)
−1

(120)

where N is the sample size and p(1At∧ 2At · · ·kAt) is the joint distribution function.

However, there might exist circumstances where a multi dimensional index of relationship might
take the form of the following equation.

NIOR(At,Bt)≡
(

1N× 2N×·· ·kN× p(1At∧ 2At · · ·kAt)

(1N× p(1At))× (2N× p(2At)) · · ·× (kN× p(kAt))

)
−1

≡
(

1N× 2N×·· ·kN× p(1At∧ 2At · · ·kAt)

E (1At)×E (2At) · · ·×E (kAt)

)
−1

(121)
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2.2. Conditions

Even if a condition and a cause are deeply related, there are circumstances where a sharp distinction
between a cause and a condition is necessary. However, exactly this has been denied by John Stuart
Mill’s (1806-1873) regularity view of causality (see Mill, 1843b). What might seem to be a theoretical
difficulty for many authors is none for Mill. Mill simply reduced a cause to a condition and claimed
that “... the real cause of the phenomenon is the assemblage of all its conditions.” (see Mill, 1843a,
p. 403)

2.2.1. Exclusion relationship

Definition 2.35 (Exclusion relationship [EXCL]).

Mathematically, the exclusion(see also Barukčić, 2021a) relationship 15 (EXCL), denoted by p(At |
Bt) in terms of statistics and probability theory, is defined(see also Barukčić, 1989, p. 68-70) as

p(At | Bt)≡ p(At ↑ Bt)

≡ p(bt)+ p(ct)+ p(dt)

≡ N× (p(bt)+ p(ct)+ p(dt))

N

≡

N
∑

t=1
(At∨Bt)

N
≡ b+ c+d

N

≡ b+A
N

≡ c+B
N

≡+1

(122)

Based on the 1913 Henry Maurice Sheffer (1882-1964) relationship, the Sheffer stroke(Nicod, 1917,
Sheffer, 1913) usually denoted by ↑, it is p(At∧Bt)≡ 1− p(At | Bt) (see table 7).

Table 7. At excludes Bt and vice versa.

Conditioned (COVID-19) Bt
TRUE FALSE

Condition (Vaccine) TRUE +0 p(bt) p(At)
At FALSE p(ct) p(dt) p(At)

p(Bt) p(Bt) +1

15Barukčić, Ilija. (2021). Mutually exclusive events. Causation, 16(11), 5–57. https://doi.org/10.5281/zenodo.5746415
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Example 2.1. Pfizer Inc. and BioNTech SE announced on Monday, November 09, 2020 - 06:45am
results from a Phase 3 COVID-19 vaccine trial with 43.538 participants which provides evidence that
their vaccine (BNT162b2) is preventing COVID-19 in participants without evidence of prior SARS-
CoV-2 infection. In toto, 170 confirmed cases of COVID-19 were evaluated, with 8 in the vaccine
group versus 162 in the placebo group. The exclusion relationship can be calculated as follows.

p(Vaccine : BNT 162b2 |COV ID−19(in f ection))≡ p(bt)+ p(ct)+ p(dt)

≡ 1− p(at)

≡ 1−
(

8
43538

)
≡+0,99981625

(123)

with a P Value = 0,000184.

Following Kolmogorov’s definition of an n-dimensional probability density (see also Kolmogorov,
Andreı̆ Nikolaevich, 1950, p. 26) of random variables At, Bt et cetera at the point t, we obtain

p(At | Bt)≡ p(At∪Bt)

≡ 1− p(At∩Bt)

≡ 1−
At∫
−∞

Bt∫
−∞

f (At,Bt) dAt dBt

≡+1

(124)

while p(At | Bt) would denote the cumulative distribution function of random variables and f (At,Bt)
is the joint density function.

2.2.2. Observational study and exclusion relationship

Under conditions of an observational study, the exclusion relationship follows approximately(see
Barukčić, 2021a) as

p(At | Bt)≡ p(At ↑ Bt)≥ 1− p(at)

p(Bt)
(125)

2.2.3. Experimental study and exclusion relationship

Under conditions of an experimental study, the exclusion relationship follows approximately(see
Barukčić, 2021a) as

p(At | Bt)≡ p(At ↑ Bt)≥ 1− p(at)

p(At)
(126)
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2.2.4. The goodness of fit test of an exclusion relationship

Definition 2.36 (The χ̃2 goodness of fit test of an exclusion relationship).

Under some well known circumstances, testing hypothesis about an exclusion relationship p(At |
Bt) is possible by the chi-square distribution (also chi-squared or χ̃2-distribution) too. The χ̃2 goodness
of fit test of an exclusion relationship with degree of freedom (d. f.) of d. f. = 1 is calculated as

χ̃
2

Calculated ((At | Bt) | A)≡
(b− (a+b))2

A
+

((c+d)−A)2

A

≡ a2

A
+0

≡ a2

A

(127)

or equally as

χ̃
2

Calculated ((At | Bt) | B)≡
(c− (a+ c))2

B
+

((b+d)−B)2

B

≡ a2

B
+0

≡ a2

B

(128)

and can be compared with a theoretical chi-square value at a certain level of significance α . The
χ̃2-distribution equals zero when the observed values are equal to the expected/theoretical values of
an exclusion relationship/distribution p(At | Bt), in which case the null hypothesis has to be accepted.
Yate’s (Yates, 1934) continuity correction was not used under these circumstances.

2.2.5. The left-tailed p Value of an exclusion relationship

Definition 2.37 (The left-tailed p Value of an exclusion relationship).

It is known that as a sample size, N, increases, a sampling distribution of a special test statistic
approaches the normal distribution (central limit theorem). Under these circumstances, the left-tailed
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(lt) p Value (Barukčić, 2019d) of an exclusion relationship can be calculated as follows.

pValuelt (At | Bt)≡ 1− e−(1−p(At|Bt))

≡ 1− e−(a/N)
(129)

A low p-value may provide some evidence of statistical significance.

2.2.6. Neither nor conditions

Definition 2.38 (Neither At nor Bt conditions [NOR]).

Mathematically, a neither At nor Bt condition (or rejection according to the French philosopher and
logician Jean George Pierre Nicod (1893-1924), i.e. Jean Nicod’s statement (Nicod, 1924)) relationship
(NOR), denoted by p(At ↓ Bt) in terms of statistics and probability theory, is defined (Barukčić, 1989,
p. 68-70) as

p(At ↓ Bt)≡ p(dt)

≡
N−

N
∑

t=1
(At∨Bt)

N
≡

N
∑

t=1
(At∧Bt)

N
≡ N× (p(dt))

N

≡ d
N

≡+1

(130)

2.2.7. The Chi square goodness of fit test of a neither nor condition relationship

Definition 2.39 (The χ̃2 goodness of fit test of a neither At nor Bt condition relationship).

A neither At nor Bt condition relationship p(At ↓ Bt) can be tested by the chi-square distribution
(also chi-squared or χ̃2-distribution). The χ̃2 goodness of fit test of a neither At nor Bt condition
relationship with degree of freedom (d. f.) of d. f. = 1 may be calculated as

χ̃
2

Calculated ((At ↓ Bt) | A)≡
(d− (c+d))2

A
+

((a+b)−A)2

A

≡ c2

A
+0

(131)
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or equally as

χ̃
2

Calculated ((At ↓ Bt) | B)≡
(d− (b+d))2

B
+

((a+ c)−B)2

B

≡ b2

B
+0

(132)

Yate’s (Yates, 1934) continuity correction has not been used in this context.

2.2.8. The left-tailed p Value of a neither nor B condition relationship

Definition 2.40 (The left-tailed p Value of a neither At nor Bt condition relationship).

The left-tailed (lt) p Value (Barukčić, 2019d) of a neither At nor Bt condition relationship can be
calculated as follows.

pValuelt (At ↓ Bt)≡ 1− e−(1−p(At↓Bt))

≡ 1− e−p(At∨Bt)

≡ 1− e−((a+b+c)/N)

(133)

where ∨ may denote disjunction or logical inclusive or. In this context, a low p-value indicates again a
statistical significance. In general, it is p(At∨Bt)≡ 1− p(At ↓ Bt) (see table 8).

Table 8. Neither At nor Bt relationship.

Conditioned Bt
YES NO

Condition At YES 0 0 0
NO 0 1 1

0 1 1
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2.2.9. Necessary condition

Definition 2.41 (Necessary condition [Conditio sine qua non]).

Despite the most extended efforts, the current state of research on conditions and conditioned is
still incomplete and very contradictory. However, even thousands of years ago and independently of
any human mind and consciousness, water has been and is still a necessary (see Barukčić, 2022b)
condition for (human) life. Without water, there has been and there is no (human) life16. It comes
therefore as no surprise that one of the first documented attempts to present a rigorous theory of con-
ditions and causation (see also Aristotle, of Stageira (384-322 B.C.E), 1908, Metaphysica III 2 997a
10 and 13/14) came from the Greek philosopher and scientist Aristotle (384-322 BCE). Thus far, it is
amazing that Aristotle himself made already a strict distinction between conditions and causes. Taking
Aristotle very seriously, it is necessary to consider that

“... everything which has a ... ... potency in question ... ... has the potency ... of acting ... not in all
circumstances but on certain conditions ... ” (see also Aristotle, of Stageira (384-322 B.C.E), 1908,

Metaphysica IX 5 1048a 14-19)

Before going into details, Aristotle went on to define the necessary condition as follows.

“... necessary ... means ...

without ... a condition, a thing cannot live ... ”

(see also Aristotle, of Stageira (384-322 B.C.E), 1908, Metaphysica V 2 1015a 20-22)

In point of fact, Aristotle developed a theory of conditions and causality commonly referred to as the
doctrine of four causes. Many aspects and general features of Aristotle’s logical concept of causality
are meanwhile extensively and critically debated in secondary literature. However, even if the Greek
philosophers Heraclitus, Plato, Aristotle et cetera numbers among the greatest philosophers of all time,
the philosophy has evolved. Scientific knowledge and objective reality are deeply interrelated and can-
not be reduced only to Greek philosophers like Aristotle. Among many other issues, the specification
of necessary conditions has traditionally been part of the philosopher’s investigations of different phe-
nomena. However, behind the need of a detailed evidence, it is justified to consider that philosophy
or philosophers as such certainly do not possess a monopoly on the truth and other areas such as
medicine as well as other sciences and technology may transmit truths as well and may be of help to
move beyond one’s self enclosed unit. Seemingly, the law’s concept of causation justifies to say few
words on this subject, to put some light on some questions. Are there any criteria in law for deciding
whether one action or an event At has caused another (generally harmful) event Bt? What are these
criteria? May causation in legal contexts differ from causation outside the law, for example, in science

16Barukčić, Ilija. (2022). Conditio sine qua non (Version 1). Zenodo. https://doi.org/10.5281/zenodo.5854744
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or in our everyday life and to what extent? Under which circumstances is it justified to tolerate such
differences as may be found to exist? To understand just what is the law’s concept of causation, it is
useful to re-consider how the highest court of states is dealing with causation. In the case Hayes v.
Michigan Central R. Co., 111 U.S. 228, the U.S. Supreme Court defined 1884 conditio sine qua non
as follows: “... causa sine qua non – a cause which, if it had not existed, the injury would not
have taken place”. (Justice Matthews, Mr., 1884) The German Bundesgerichtshof für Strafsachen
stressed once again the importance of conditio sine qua non relationship in his decision by defining
the following: “Ursache eines strafrechtlich bedeutsamen Erfolges jede Bedingung, die nicht hin-
weggedacht werden kann, ohne daß der Erfolg entfiele”(Bundesgerichtshof für Strafsachen, 1951)
Another lawyer elaborated on the basic issue of identity and difference between cause and condi-
tion. Von Bar was writing: “Die erste Voraussetzung, welche erforderlich ist, damit eine Erscheinung
als die Ursache einer anderen bezeichnet werden könne, ist, daß jene eine der Bedingungen dieser
sein. Würde die zweite Erscheinung auch dann eingetreten sein, wenn die erste nicht vorhanden war,
so ist sie in keinem Falle Bedingung und noch weniger Ursache. Wo immer ein Kausalzusammenhang
behauptet wird, da muß er wenigstens diese Probe aushalten . . . Jede Ursache ist nothwendig auch
eine Bedingung eines Ereignisses; aber nicht jede Bedingung ist Ursache zu nennen.”(Bar, Carl
Ludwig von, 1871) Von Bar’s position translated into English: The first requirement, which is required,
thus that something could be called as the cause of another, is that the one has to be one of the con-
ditions of the other. If the second something had occurred even if the first one did not exist, so it is
by no means a condition and still less a cause. Wherever a causal relationship is claimed, the same
must at least withstand this test. . . Every cause is necessarily also a condition of an event too; but not
every condition is cause too. Thus far, let us consider among other the following in order to specify
necessary conditions from another, probabilistic point of view. An event (i.e. At) which is a necessary
condition of another event or outcome (i.e. Bt) must be given, must be present for a conditioned, for
an event or for an outcome Bt to occur. A necessary condition (i.e. At) is a requirement which need
to be fulfilled at every single Bernoulli trial t, in order for a conditioned or an outcome (i.e. Bt) to
occur, but it alone does not determine the occurrence of such an event. In other words, if a necessary
condition (i.e. At) is given, an outcome (i.e. Bt) need not to occur. In contrast to a necessary condition,
a ‘sufficient’condition is the one condition which ‘guarantees’that an outcome will take place or will
occur for sure. Under which conditions we may infer about the unobserved and whether observations
made are able at all to justify predictions about potential observations which have not yet been made
or even general claims which my go even beyond the observed (the ‘problem of induction’) is not the
issue of the discussion at this point. Besides of the principal necessity of meeting such a challenge, a
necessary condition of an event can but need not be at the same Bernoulli trial t a sufficient condition
for an event to occur. However, theoretically, it is possible that an event or an outcome is determined
by many necessary conditions. Let us focus to some extent on what this means, or in other words how
much importance can we attribute to such a special case. Example. A human being cannot live without
oxygen. A human being cannot live without water. A human being cannot live without a brain. A
human being cannot live without kidneys. A human being cannot live without ... et cetera. Thus far,
even if oxygen is given, if a brain is given ... et cetera, without water a human being will not survive
on the long run. This example is of use to reach the following conclusion. Although it might seem
somewhat paradoxical at first sight, even under circumstances where a condition or an outcome
depends on several different necessary conditions it is particularly important that every single of
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these necessary conditions for itself must be given otherwise the conditioned (i.e. the outcome)
will not occur. Mathematically, the necessary condition (SINE) relationship, denoted by p(At ← Bt)
in terms of statistics and probability theory, is defined (Barukčić, 1989, p. 15-28) as

p(At← Bt)≡ p(At∨Bt)≡

N
∑

t=1
(At∨Bt)

N
≡ (At∨Bt)× p(At∨Bt)

(At∨Bt)

≡ p(at)+ p(bt)+ p(dt)

≡ N× (p(at)+ p(bt)+ p(dt))

N
≡ E (At← Bt)

N

≡ a+b+d
N

≡ E (At∨Bt)

N

≡ A+d
N
≡ E (At← Bt)

N

≡ a+B
N
≡ E (At∨Bt)

N
≡+1

(134)

where E (At← Bt)≡ E (At∨Bt) indicates the expectation value of the necessary condition. In general,
it is p(At−< Bt)≡ 1− p(At← Bt) (see Table 9).

Table 9. Necessary condition.

Conditioned Bt
TRUE FALSE

Condition TRUE p(at) p(bt) p(At)
At FALSE +0 p(dt) p(At)

p(Bt) p(Bt) +1

A necessary condition At is characterised itself by the property that another event Bt will not occur if
At is not given, if At did not occur (Barukčić, 1989, 1997, 2005, 2016b, 2017b,c, 2020a,b,c,d, Barukčić
and Ufuoma, 2020a). Taking into account Kolmogorov’s definition of an n-dimensional probability
density (see also Kolmogorov, Andreı̆ Nikolaevich, 1950, p. 26) of random variables At, Bt et cetera
at the (period of) time t, we obtain

p(At← Bt)≡+1
≡+1− p(ct)

≡+1− p(At∩Bt)

≡

 At∫
−∞

Bt∫
−∞

f (At,Bt) dAt dBt

+

1−
Bt∫
−∞

f (Bt) dBt


(135)

while p(At← Bt) would denote the cumulative distribution function of random variables of a necessary
condition. Another adequate formulation of a necessary condition is possible too. If certain conditions
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are met, then necessary conditions and sufficient conditions are one way or another converses of each
other, too. It is

p(At← Bt)≡ (At∨Bt)︸      ︷︷      ︸
(Necessary condition)

≡ (Bt∨At)︸      ︷︷      ︸
(Sufficient condition)

≡ p(Bt→ At) (136)

These relationships are illustrated by the following tables.

Table 10. Without At no Bt

Bt
TRUE FALSE

At TRUE at bt At
FALSE ct = 0 dt At

Bt Bt +1

Table 11. If Bt then At

At
TRUE FALSE

Bt TRUE at ct = 0 Bt
FALSE bt dt Bt

At At +1

There are circumstances under which

p(At← Bt)≡ (At∨Bt)︸      ︷︷      ︸
(Nessessary condition)

≡ (At∨Bt)︸      ︷︷      ︸
(Sufficient condition)

≡ p(At→ Bt) (137)

However, equation 136 does not imply the relationship of equation 137 under any circumstances.

Example I.

A wax candle is characterised by various properties, but is also subject to certain conditions. With-
out sufficient amounts of gaseous oxygen no burning wax candle, gaseous oxygen is a necessary con-
dition of a burning candle. However, the converse relationship if burning wax candle, then sufficient
amounts of gaseous oxygen are given is is at the same (period of) time t / Bernoulli trial t true. The
following tables are illustrating these relationships.

Table 12. Without gaseous
oxygen no burning candle

Burning candle
TRUE FALSE

Gaseous TRUE at bt At
oxygen FALSE ct = 0 dt At

Bt Bt +1

Table 13. If burning candle
then gaseous oxygen

Gaseous oxygen
TRUE FALSE

Burning TRUE at ct = 0 Bt
candle FALSE bt dt Bt

At At +1

Example II.

Once again, a human being cannot live without water. A human being cannot live without gaseous
oxygen, et cetera. Water itself is a necessary condition for human life. However, gaseous oxygen
is a necessary condition for human life too. Thus far, even if water is given and even if water is a
necessary condition for human life, without gaseous oxygen there will be no human life. In general, if
a conditioned or an outcome Bt depends on the necessary condition At and equally on numerous other
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necessary conditions, an event Bt will not occur if At itself is not given independently of the occurrence
of other necessary conditions.

Example III.

Another different aspect of a necessary condition relationship is appropriate to be focused upon
here. As a direct consequence of a necessary condition without sufficient amounts of gaseous oxygen
no burning wax candle is a special case of an exclusion relationship. The absence of sufficient amounts
of gaseous oxygen At excludes (see Barukčić, 2021a) a burning wax candle Bt. Thus far, if we want
to stop the burning of a wax candle, we would have to significantly reduce the amounts of gaseous
oxygen At. Under these conditions, a wax candle will stop burning. The following tables (table 14 and
table 15 ) may illustrate this aspect of a necessary condition in more detail.

Table 14. Without gaseous
oxygen no burning candle

Burning candle
TRUE FALSE

Gaseous TRUE at bt At
oxygen FALSE ct = 0 dt At

Bt Bt +1

Table 15. Absent gaseous oxy-
gen excludes burning wax can-
dle

Burning candle
TRUE FALSE

Gaseous FALSE ct= 0 dt Bt
oxygen TRUE at bt Bt

At At +1

The necessary condition relationship follows approximately (see Barukčić, 2022b) as

p(At← Bt)≥ 1− p(ct)

p(Bt)
(138)

and as

p(At← Bt)≥ 1− p(ct)

p(At)
(139)

2.2.10. The Chi-square goodness of fit test of a necessary condition relationship

Definition 2.42 (The χ̃2 goodness of fit test of a necessary condition relationship).

Under some well known circumstances, hypothesis about the conditio sine qua non relationship
p(At ← Bt) can be tested by the chi-square distribution (also chi-squared or χ2-distribution), first
described by the German statistician Friedrich Robert Helmert (Helmert, 1876) and later rediscovered
by Karl Pearson (Pearson, 1900) in the context of a goodness of fit test. The χ̃2 goodness of fit test of
a conditio sine qua non relationship with degree of freedom (d. f.) of d. f. = 1 is calculated as
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χ̃
2

Calculated (At← Bt | B)≡
(a− (a+ c))2

B
+

((b+d)−B)2

B

≡ c2

B
+0

≡ c2

B

(140)

or equally as

χ̃
2

Calculated (At← Bt | A)≡
(d− (c+d))2

A
+

((a+b)−A)2

A

≡ c2

A
+0

≡ c2

A

(141)

and can be compared with a theoretical chi-square value at a certain level of significance α . It has
not yet been finally clarified whether the use of Yate’s (Yates, 1934) continuity correction is necessary
at all.

2.2.11. The left-tailed p Value of the conditio sine qua non relationship

Definition 2.43 (The left-tailed p Value of the conditio sine qua non relationship).

The left-tailed (lt) p Value (Barukčić, 2019d) of the conditio sine qua non relationship can be cal-
culated as follows.

pValuelt (At← Bt)≡ 1− e−(1−p(At←Bt))

≡ 1− e−(c/N)
(142)
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2.2.12. Sufficient condition

Definition 2.44 (Sufficient condition [Conditio per quam]).

Mathematically, the sufficient (Barukčić, 2021c, p. 68-70) condition (see Barukčić, 2022a) (IMP)
relationship, denoted by p(At → Bt) in terms of statistics and probability theory, is defined (Barukčić,
1989, p. 68-70) as

p(At→ Bt)≡ p(At∨Bt)≡

N
∑

t=1
(At∨Bt)

N
≡ (At∨Bt)× p(At∨Bt)

(At∨Bt)

≡ p(at)+ p(ct)+ p(dt)

N× (p(at)+ p(ct)+ p(dt))

N

≡ a+ c+d
N

≡ E (At∨Bt)

N

≡ B+d
N
≡ E (At→ Bt)

N

≡ a+A
N

≡+1

(143)

In general, it is p(At >−Bt)≡ 1− p(At→ Bt) (see Table 16).

2.2.12.1. Mackie’s INUS Condition John Leslie Mackie (1917-1981) critically examined the the-
ories of causation of various (see Ducasse, 1926) philosophers such as Hume (Book I, Part III, of
the Treatise) (see Mackie, 1974, pp. 3-28), Kant (as well as Kantian approaches offered by Strawson
and Bennett), Mill and other. Mackie rightly claims that Hume’s regularity theory of causation offer
only an incomplete picture of the nature of causation. Mackie writes: “It seems appropriate to begin
by examining and criticizing it, so that we can take over from it whatever seems to be defensible but
develop an improved account by correcting its errors and deficiencies.” (see Mackie, 1974, p. 3).
Nonetheless, in his trial to develop an improved account of Hume’s theory of causation, Mackie’s own
account of the nature of causation follows Hume’s principles of causation very closely (see Mackie,
1974, pp. 3-28). Mackie himself proposed already in 1965 that “the so-called cause is ... an insuffi-
cient but necessary part of a condition which is itself unnecessary but sufficient for the result ... let
us call such a condition ... an INUS condition.” (see Mackie, 1965, p. 245 ). However Mackie’s
account needs modification, and can be modified and when it is modified we can explain much more
satisfactorily what Mackie ordinarily take to be a cause. Mackie is of the opinion that “... cause is ...
part of a condition ... ” (see Mackie, 1965, p. 245 ) and that “... a condition ... is ... unnecessary
but sufficient for the result [i. e. effect, author]. ” (see Mackie, 1965, p. 245 ). To put it very simply
one could say that Mackie reduces a cause to a sufficient condition, “... cause is ... a condition which
is itself ... sufficient ... ” (see Mackie, 1965, p. 245 ). Indeed, there are circumstances, where several
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different events 17 might be necessary or sufficient et cetera at the same time in order to determine
a compound/complex sufficient condition relationship. Thus far, it seems appropriate to take over
from Mackie’s INUS condition whatever seems to be acceptable but to develop an improved account by
correcting its deficiencies and errors in order to do justice to the complexity of affairs. Equation 144
illustrates one real-world example of a compound/complex sufficient condition relationship in more
detail.

p(((1X t∧ 2X t∧ 3X t∧·· ·)∧At)→ Bt)≡ p
(
((1X t∧ 2X t∧ 3X t∧·· ·)∧At)∨Bt

)

≡

N
∑

t=1

(
((1X t∧ 2X t∧ 3X t∧·· ·)∧At)∨Bt

)
N

≡+1

(144)

Again, taking into account Kolmogorov’s definition of an n-dimensional probability density (see also
Kolmogorov, Andreı̆ Nikolaevich, 1950, p. 26) of random variables At, Bt et cetera at the (period of)
time t, we obtain

p(At→ Bt)≡+1
≡+1− p(bt)

≡+1− p(At∩Bt)

≡

 At∫
−∞

Bt∫
−∞

f (At,Bt) dAt dBt

+

1−
At∫
−∞

f (At) dAt


(145)

while p(At→ Bt) would denote the cumulative distribution function of random variables of a sufficient
condition. Another adequate formulation of a sufficient condition is possible too.

Table 16. Sufficient condition.

Conditioned Bt
TRUE FALSE

Condition TRUE p(at) +0 p(At)
At FALSE p(ct) p(dt) p(At)

p(Bt) p(Bt) +1

Remark 2.2. A sufficient condition At is characterized by the property that another event Bt will occur
if At is given, if At itself occured (Barukčić, 1989, 1997, 2005, 2016b, 2017b,c, 2020a,b,c,d, Barukčić
and Ufuoma, 2020a). Example. The ground, the streets, the trees, human beings and many other
objects too will become wet during heavy rain. Especially, if it is raining (event At), then human
beings will become wet (event Bt). However, even if this is a common human wisdom, a human being
equipped with an appropriate umbrella (denoted by Rt) need not become wet even during heavy rain.
An appropriate umbrella (Rt) is similar to an event with the potential to counteract the occurrence of

17Barukčić, Ilija. (2022). Conditio per quam. Causation, 17(3), 5–86. https://doi.org/10.5281/zenodo.6369831
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another event (Bt) and can be understood something as an anti-dot of another event. In other words,
an appropriate umbrella is an antidote of the effect of rain on human body, an appropriate umbrella
has the potential to protect humans from the effect of rain on their body. It is a good rule of thumb that
the following relationship

p(At→ Bt)+ p(Rt∧Bt)≡+1 (146)

indicates that Rt is an antidote of At. However, taking a shower, swimming in a lake et cetera may make
human hair wet too. More than anything else, however, these events does not affect the final outcome,
the effect of raining on human body.

The approximate (see Barukčić, 2022a) value of the material implication is given as

p(At→ Bt)≥ 1− p(bt)

p(At)
(147)

and alternatively as

p(At→ Bt)≥ 1− p(bt)

p(Bt)
(148)

2.2.13. The Chi square goodness of fit test of a sufficient condition relationship

Definition 2.45 (The χ̃2 goodness of fit test of a sufficient condition relationship).

Under some well known circumstances, testing hypothesis about the conditio per quam relationship
p(At→ Bt) is possible by the chi-square distribution (also chi-squared or χ̃2-distribution) too. The χ̃2

goodness of fit test of a conditio per quam relationship with degree of freedom (d. f.) of d. f. = 1 is
calculated as

χ̃
2

Calculated (At→ Bt | A)≡
(a− (a+b))2

A
+

((c+d)−A)2

A

≡ b2

A
+0

≡ b2

A

(149)
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or equally as

χ̃
2

Calculated (At→ Bt | B)≡
(d− (b+d))2

B
+

((a+ c)−B)2

B

≡ b2

B
+0

≡ b2

B

(150)

and can be compared with a theoretical chi-square value at a certain level of significance α . The
χ̃2-distribution equals zero when the observed values are equal to the expected/theoretical values of the
conditio per quam relationship/distribution p(At → Bt), in which case the null hypothesis is accepted.
Yate’s (Yates, 1934) continuity correction has not been used in this context.

2.2.14. The left-tailed p Value of the conditio per quam relationship

Definition 2.46 (The left-tailed p Value of the conditio per quam relationship).

The left-tailed (lt) p Value (Barukčić, 2019d) of the conditio per quam relationship can be calculated
as follows.

pValuelt (At→ Bt)≡ 1− e−(1−p(At→Bt))

≡ 1− e−(b/N)
(151)

Again, a low p-value indicates a statistical significance.

2.2.15. Necessary and sufficient conditions

Definition 2.47 (Necessary and sufficient conditions [EQV]).

The necessary and sufficient condition (EQV) relationship, denoted by p(At ↔ Bt) in terms of
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statistics and probability theory, is defined(Barukčić, 1989, p. 68-70) as

p(At↔ Bt)≡

N
∑

t=1
((At∨Bt)∧ (At∨Bt))

N
≡ p(at)+ p(dt)

≡ N× (p(at)+ p(dt))

N

≡ a+d
N

≡+1

(152)

2.2.16. The Chi square goodness of fit test of a necessary and sufficient condition relationship

Definition 2.48 (The χ̃2 goodness of fit test of a necessary and sufficient condition relationship).

Even the necessary and sufficient condition relationship p(At↔ Bt) can be tested by the chi-square
distribution (also chi-squared or χ̃2-distribution) too. The χ̃2 goodness of fit test of a necessary and
sufficient condition relationship with degree of freedom (d. f.) of d. f. = 1 is calculated as

χ̃
2

Calculated (At↔ Bt | A)≡
(a− (a+b))2

A
+

d− ((c+d))2

A

≡ b2

A
+

c2

A

(153)

or equally as

χ̃
2

Calculated (At↔ Bt | B)≡
(a− (a+ c))2

B
+

d− ((b+d))2

B

≡ c2

B
+

b2

B

(154)

The calculated χ̃2 goodness of fit test of a necessary and sufficient condition relationship can be
compared with a theoretical chi-square value at a certain level of significance α . Under conditions
where the observed values are equal to the expected/theoretical values of a necessary and sufficient
condition relationship/distribution p(At ↔ Bt), the χ̃2-distribution equals zero. It is to be cleared
whether Yate’s (Yates, 1934) continuity correction should be used at all.

CAUSATION ISSN: 1863-9542 https://www.doi.org/10.5281/zenodo.6816088 Volume 18, Issue 1, 5–99

https://portal.issn.org/resource/ISSN/1863-9542
https://www.doi.org/10.5281/zenodo.6816088


59

2.2.17. The left-tailed p Value of a necessary and sufficient condition relationship

Definition 2.49 (The left-tailed p Value of a necessary and sufficient condition relationship).

The left-tailed (lt) p Value (Barukčić, 2019d) of a necessary and sufficient condition relationship
can be calculated as follows.

pValuelt (At↔ Bt)≡ 1− e−(1−p(At↔Bt))

≡ 1− e−((b+c)/N)
(155)

In this context, a low p-value indicates again a statistical significance. Table 17 may provide an
overview of the theoretical distribution of a necessary and sufficient condition.

Table 17. Necessary and sufficient condition.

Conditioned Bt
YES NO

Condition At YES 1 0 1
NO 0 1 1

1 1 2

2.2.18. Either or conditions

Definition 2.50 (Either At or Bt conditions [NEQV]).

Mathematically, an either At or Bt condition relationship (NEQV), denoted by p(At >−< Bt) in
terms of statistics and probability theory, is defined(Barukčić, 1989, p. 68-70) as

p(At >−< Bt)≡

N
∑

t=1
((At∧Bt)∨ (At∧Bt))

N
≡ p(bt)+ p(ct)

≡ N× (p(bt)+ p(ct))

N

≡ b+ c
N

≡+1

(156)

It is p(At >−< Bt)≡ 1− p(At <−> Bt) (see Table 18).
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Table 18. Either At or Bt relationship.

Conditioned Bt
YES NO

Condition At YES 0 1 1
NO 1 0 1

1 1 2

2.2.19. The Chi-square goodness of fit test of an either or condition relationship

Definition 2.51 (The χ̃2 goodness of fit test of an either or condition relationship).

An either or condition relationship p(At >−< Bt) can be tested by the chi-square distribution (also
chi-squared or χ̃2-distribution) too. The χ̃2 goodness of fit test of an either or condition relationship
with degree of freedom (d. f.) of d. f. = 1 is calculated as

χ̃
2

Calculated ((At >−< Bt) | A)≡
(b− (a+b))2

A
+

c− ((c+d))2

A

≡ a2

A
+

d2

A

(157)

or equally as

χ̃
2

Calculated ((At >−< Bt) | B)≡
(c− (a+ c))2

B
+

b− ((b+d))2

B

≡ a2

B
+

d2

B

(158)

Yate’s (Yates, 1934) continuity correction has not been used in this context.

2.2.20. The left-tailed p Value of an either or condition relationship

Definition 2.52 (The left-tailed p Value of an either or condition relationship).
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The left-tailed (lt) p Value (Barukčić, 2019d) of an either or condition relationship can be calculated
as follows.

pValuelt (At >−< Bt)≡ 1− e−(1−p(At>−<Bt))

≡ 1− e−((a+d)/N)
(159)

In this context, a low p-value indicates again a statistical significance.
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2.3. Causation

2.3.1. Causation in general

The history of the denialism of causality in Philosophy, Mathematics, Statistics, Physics et cetera
is very long. We only recall David Hume’s (1711-1776) account of causation and his inappropriate re-
duction of the cause-effect relationship to a simple habitual connection in human thinking or Immanuel
Kant’s (1724-1804) initiated trial to consider causality as nothing more but a ‘a priori’given category
(Langsam, 1994) in human reasoning and other similar attempts too.

It is worth noting in this context that especially Karl Pearson (1857 - 1936) himself has been en-
gaged in a long lasting and never-ending crusade against causation too. “Pearson categorically denies
the need for an independent concept of causal relation beyond correlation ... he exterminated cau-
sation from statistics before it had a chance to take root ”(see Pearl, 2000, p. 340).

At the beginning of the 20th century notable proponents of conditionalism like the German
anatomist and pathologist David Paul von Hansemann (Hansemann, David Paul von, 1912) (1858 -
1920) and the biologist and physiologist Max Richard Constantin Verworn(Verworn, 1912) (1863 -
1921) started a new attack(Kröber, 1961) on the principle of causality. In his essay “Kausale und
konditionale Weltanschauung”Verworn(Verworn, 1912) presented “an exposition of ‘conditionism’as
contrasted with ‘causalism,’(Unknown, 1913) while ignoring cause and effect relationships completely.
“Das Ding ist also identisch mit der Gesamtheit seiner Bedingungen.”(Verworn, 1912) However,
Verworn’s goal to exterminate causality completely out of science was hindered by the further devel-
opment of research.

The history of futile attempts to refute the principle of causality culminated in a publication by the
German born physicist Werner Karl Heisenberg (1901 - 1976). Heisenberg put forward an illogical,
inconsistent and confusing uncertainty principle which opened the door to wishful thinking and logical
fallacies in physics and in science as such. Heisenberg’s unjustified reasoning ended in an act of a man-
ifestly unfounded conclusion: “Weil alle Experimente den Gesetzen der Quantenmechanik und
damit der Gleichung (1) unterworfen sind, so wird durch die Quantenmechanik die Ungültigkeit
des Kausalgesetzes definitiv festgestellt.”(Heisenberg, Werner Karl, 1927) while ‘Gleichung (1)’de-
notes Heisenberg’s uncertainty principle. Einstein’s himself, a major contributor to quantum theory
and in the same respect a major critic of quantum theory, disliked Heisenberg’s uncertainty principle
fundamentally while Einstein’s opponents used Heisenberg’s Uncertainty Principle against Einstein.
After the End of the German Nazi initiated Second World War with unimaginable brutality and high
human losses and a death toll due to an industrially organised mass killing of people by the German
Nazis which did not exist in this way before, Werner Heisenberg visited Einstein in Princeton (New
Jersey, USA) in October 1954 (Neffe, 2006). Einstein agreed to meet Heisenberg only for a very short
period of time but their encounter lasted longer. However, there where not only a number of differences
between Einstein and Heisenberg, these two physicists did not really loved each other. “Einstein re-
marked that the inventor of the uncertainty principle was a ‘big Nazi’... ”(Neffe, 2006) Albert Einstein
(1879 - 1955) took again the opportunity to refuse to endorse Heisenberg’s uncertainty principle
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as a fundamental law of nature and rightly too. Meanwhile, Heisenberg’s uncertainty principle is re-
futed (see Barukčić, 2011a, 2014, 2016a) for several times but still not exterminated completely out
of physics and out of science as such.

In contrast to such extreme anti-causal positions as advocated by Heisenberg and the Copenhagen
interpretation of quantum mechancis, the search for a (mathematical) solution of the issue of causal
inferences is as old as human mankind itself (“i. e. Aristotle’s Doctrine of the Four Causes”) (Hennig,
2009) even if there is still little to go on.

It is appropriate to specify especially the position of D’Holbach(Holbach, Paul Henri Thiry Baron
de, 1770). D’Holbach (1723-1789) himself linked cause and effect or causality as such to changes.
“Une cause, est un être qui e met un autre en mouvement, ou qui produit quelque changement
en lui. L’effet est le changement qu’un corps produit dans un autre ...”(Holbach, Paul Henri Thiry
Baron de, 1770). D’Holbach infers in the following: “De l’action et de la réaction continuelle de
tous les êtres que la nature renferme, il résulte une suite de causes et d’effets ...”(Holbach, Paul
Henri Thiry Baron de, 1770).

With more or less meaningless or none progress on the matter in hand even in the best possible
conditions, it is not surprising that authors are suggesting more and more different approaches and
models for causal inference. Indeed, the hope is justified that logically consistent statistical methods
of causal inference can help scientist to achieve so much with so little.

One of the methods of causal inference in Bio-sciences are based on the known Henle(Henle, 1840)
(1809–1885) - Koch(Koch, 1878) (1843–1910) postulates (Carter, 1985) which are applied especially
for the identification of a causative agent of an (infectious) disease. However, the pathogenesis of
most chronic diseases is more or less very complex and potentially involves the interaction of several
factors. In practice, from the ‘pure culture’ requirement of the Henle-Koch postulates insurmountable
difficulties may emerge. In light of subsequent developments (PCR methodology, immune antibodies
et cetera) it is appropriate to review the full validity of the Henle-Koch postulates in our days.

In 1965, Sir Austin Bradford Hill (Hill, 1965) published nine criteria (the ‘Bradford Hill Criteria ’)
in order to determine whether observed epidemiological associations are causal. Somewhat worrying,
is at least the fact that, Hill’s “... fourth characteristic is the temporal relationship of the associa-
tion ” and so-to-speak just a reformulation of the ‘post hoc ergo propter hoc’(Barukčić, 1989, Woods
and Walton, 1977) logical fallacy through the back-door and much more then this. It is questionable
whether association as such can be treated as being identical with causation. Unfortunately, due to
several reasons, it seems therefore rather problematic to rely on Bradford Hill Criteria carelessly.

Meanwhile, several other and competing mathematical or statistical approaches for causal inference
have been discussed by various modern authors (Barukčić, 1989, 1997, 2005, 2016b, 2017a,c, Bohr,
1937, Chisholm, 1946, Dempster, 1990, Espejo, 2007, Goodman, 1947, Granger, 1969, Hessen, Jo-
hannes, 1928, Hesslow, 1976, 1981, Korch, Helmut, 1965, Lewis, David Kellogg, 1973, 1974, Pearl,
2000, Schlick, Friedrich Albert Moritz, 1931, Spohn, 1983, Suppes, 1970, Todd, 1968, Zesar, 2013)
or even established (Barukčić, 1989, 1997, 2005, 2016b, 2017a,c). Nevertheless, the question is still
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not answered, is it at all possible to establish a cause effect relationship between two factors while
applying only certain statistical (Sober, 2001) methods?

2.3.2. Cause and effect

Besides all, there are several further aspects of causation for which our attention so far has not been
adequately fixed in this context. In the causal relationship, cause and effect are united, a cause is an
effect and an effect is a cause.

“Thus, in the causal relation, cause and effect are inseparable; a cause which had no effect would
not be a cause, just as an effect which had no cause would no longer be an effect. ”

(see Hegel, Georg Wilhelm Friedrich, 1991, p. 151)

The unity of cause and effect is a unity of two which are not the same. Cause and effect as inseparable
in the causal relation are at the same time mutually related as sheer others; each of both as united in its
own self to the other of itself is able to passes over into its own other and vice versa. Yet, to approach
from a different point of view, a cause and an effect are separated in the same relation too, a cause is
not an effect and an effect is not a cause, both are different in the same relation.

jeffectt

Event ketEvent jct

jcauset keffectt kcauset

Causal relationship

“Therefore, though the cause has an effect and

is at the same time itself effect,

and the effect not only has a cause but is also

itself cause,

yet the effect which the cause has, and the

effect which it is, are different,

as are also the cause which the effect has, and

the cause which it is.” (see Hegel, Georg

Wilhelm Friedrich, 1991, p. 565/566)

2.3.2.1. What is a cause, what is an effect? An important fact to which we must pay attention here
is that in a causal relation, under certain circumstances, an individual cause and an individual effect
are related to each other in their own particular way. An effect which vanishes in its own cause in the
same respect equally becomes again in it and vice versa. A cause which is merely extinguished in its
own effect becomes again in the same. In fact, each of these determinations presupposes in its own
other its own self and constitutes the intimate tie between an individual cause and its own individual
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effect. Thus far, under conditions of a positive causal relationship k, an event Ut which is for sure a
cause of another event Wt is at the same time t a necessary and sufficient condition of an event Wt.
Table 19 may illustrate this relationship. A matter of great theoretical importance is the fundamental

Table 19. What is the cause, what is the effect?

Effect Wt
TRUE FALSE

Cause TRUE +1 +0 p(Ut)
Ut FALSE +0 +1 p(Ut)

p(Wt) p(Wt) +1

relationship between a cause and a condition. Are both, cause and condition, at the end identical? As
of now, following Mill (see Mill, 1843a, p. 403), Verworn (see Verworn, 1912), Mackie and others,
we can give a clear ‘Yes’in reply to this question: “... cause is ... a condition which is itself ... sufficient
... ” (see Mackie, 1965, p. 245 ). However, this issue is not as simple as it sounds, according to
Mackie. Thus far, it is essential to eliminate some errors. Indeed, there are circumstances where a
cause and a condition are identical, a cause and a condition are equivalent. However, as outlined in
this publication, both, a cause and a condition, are different too and a cause and a condition are not
identical either.

“Jede Ursache ist nothwendig auch eine Bedingung eines Ereignisses;
aber nicht jede Bedingung ist Ursache zu nennen. ”

(see Bar, Carl Ludwig von, 1871, p. 4)

The crux of the matter is that not every condition is a cause too, in German: “... nicht jede Bedingung
ist Ursache ... ”(see Bar, Carl Ludwig von, 1871, p. 4). However, and in contrast to a condition,
every cause as such is indeed a condition too, in German: “Jede Ursache ist ... auch eine Bedingung ...
”(see Bar, Carl Ludwig von, 1871, p. 4). In general, a cause Ut is a necessary condition of an effect
Wt. In other words, without a cause Ut no effect Wt. One consequence of the necessary condition
relationship between cause and effect is that “... an effect which had no cause would no longer be an
effect. ” (see Hegel, Georg Wilhelm Friedrich, 1991, p. 151). However, a cause Ut being a necessary
condition of an effect Wt is equivalent to an effect Wt being a sufficient condition of the same cause Ut
and vice versa too. In our everyday words,

without

Ut

no

Wt
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is equivalent with

if

Wt

then

Ut

and vice versa. As can be seen, there is a kind of strange mirroring between Ut and Wt at the same
Bernoulli trial t. Lastly, both are converses of each other too. In other words, Ut’s being a necessary
condition of Wt’s is equivalent to Wt’s being a sufficient condition of Ut’s (and vice versa). In general,
it is

(U t∨W t)≡ (W t∨U t)≡ ((U t∨W t)∧ (W t∨U t))≡+1 (160)

Effect Wt
TRUE FALSE

Cause TRUE at bt Ut
Ut FALSE ct = 0 dt Ut

Wt Wt +1

Table 20. Without Ut no Wt

Cause Ut
TRUE FALSE

Effect TRUE at ct = 0 Wt
Wt FALSE bt dt Wt

Ut Ut +1

Table 21. If Wt then Ut

The other side of the causal relation at the same (period of) time / Bernoulli trial t is the fact that a
cause Ut is equally a sufficient condition of an effect Wt too or shortly if cause Ut then effect Wt. One
straightforward consequence of this fundamental relationship between a cause and an effect is that “...
a cause which had no effect would not be a cause ... ” (see Hegel, Georg Wilhelm Friedrich, 1991,
p. 151). But even this is not without difficulties, because a cause Ut being a sufficient condition of
an effect Wt is equivalent to effect Wt being a necessary condition of the same cause Ut. In different
words,

if

Ut

then

Wt

is equivalent with

without

Wt
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no

Ut.

Effect Wt
TRUE FALSE

Cause TRUE at bt = 0 Ut
Ut FALSE ct dt Ut

Wt Wt +1

Table 22. If Ut then Wt

Cause Ut
TRUE FALSE

Effect TRUE at ct Wt
Wt FALSE bt = 0 dt Wt

Ut Ut +1

Table 23. Without Wt no Ut

To bring it to the point, necessary and sufficient conditions are at the end converses (see Gomes,
Gilberto, 2009) of each other and far more than this. In fact, there is a kind of reciprocity or mirroring
between cause and effect. Necessary and sufficient conditions are relationships used to describe the
relationship between two events at the same Bernoulli trial t. In more detail, if Ut then Wt is equivalent
with Wt is necessary for Ut, because the truth of Ut guarantees the truth of Wt. In general, it is

(U t∨W t)≡ (W t∨U t)≡ ((U t∨W t)∧ (W t∨U t))≡+1 (161)

In other words, it is impossible to have Ut without Wt (Bloch, 2011). Similarly, Ut is sufficient for
Wt, because Ut being true always implies that Wt is true, but Ut not being true does not always imply
that Wt is not true. And we should use this relationships to make our point. In general, without gaseous
oxygen (Ut), there is no burning wax candle (Wt); hence the relationship if burning wax candle (Wt)
then gaseous oxygen (Ut) is equally true and given. This everyday knowledge is known and secured
since centuries and might be illustrated as follows.

Wax candle Bt
burning not burning

Gaseous present at bt At
oxygent not present ct = 0 dt At

Bt Bt +1

Table 24. Without At no Bt

Gaseous oxygen At
present not present

Wax candle burning at ct = 0 Bt
not burning bt dt Bt

At At +1

Table 25. If Bt then At

Nonetheless, and independently of this secured everyday knowledge, a burning wax candle is a
sufficient condition of gaseous oxygen but not the cause of gaseous oxygen.

Given all the circumstances, it is at least this simple counter-example which provides us with a
convincing evidence that a sufficient condition alone is not enough to describe a cause completely.
In general, a cause as such cannot be reduced to a simple sufficient condition.

In contrast to this obvious fact, other authors prefer another approach to the definition of a cause.
“So that, more explicitly, if a given particular event is regarded as having been sufficient to the occur-
rence of another, it is said to have been its cause; if regarded as having been necessary to the occurrence
of another, it is said to have been a condition of it; ...” (see Ducasse, 1926, p. 58). Therefore, in order
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to be a cause of oxygen, additional evidence is necessary that a burning wax candle is a necessary con-
dition of gaseous oxygen too. However, even if the relationship without gaseous oxygen no burning
wax candle is given, this relationship is not given vice versa. The relationship without burning wax
candle no gaseous oxygen is not given. Like other fundamental concepts, the concepts of cause and
effect can be associated with difficulties too. Under certain conditions, the causal relationship between
Ut and Wt, when correctly defined and recognised, is closely allied with the requirement that a certain
study or that at least other, different studies provided evidence of a necessary condition between Ut
and Wt and of a sufficient condition between Ut and Wt and if possible of a necessary and sufficient
condition between Ut and Wt too.

Mathematically, a necessary and sufficient condition between Ut and Wt is defined as

(U t∨W t)∧ (U t∨W t)≡+1 (162)

However, I think it necessary to make a clear distinction between a necessary and sufficient condi-
tion and the converse relationship (Eq. 160) above.

((U t∨W t)∧ (W t∨U t)) , (U t∨W t)∧ (U t∨W t) (163)

2.3.2.2. The direction of causation In general, a cause is related to its own effect in its own way
and vice versa (see Mackie, 1966, p. 160) too. The effect (see Black, 1956) of this cause is itself
related to its own cause in some way in which the cause is not related to its own effect (see Dummett
and Flew, 1954). This can be considered as one of the reasons why the relation between cause and
effect is taken to be asymmetrical.

2.3.2.3. The priority of cause to effect Contemporary discussions of causation are greatly influ-
enced by the causal relation that ‘an effect Wt is causally dependent upon a cause Ut’. However, under
certain conditions (mono-causality), to say that ‘an effect Wt is causally dependent upon a cause Ut’is
to say that ‘if a cause Ut had not occurred, then an effect Wt would not have occurred too.’ (see
Lewis, David Kellogg, 1973, 1974). However, what came first, the hen or the egg, the cause or the
effect?
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2.3.3. Definition causal relationship k

Definition 2.53 (Causal relationship k).

Nonetheless, mathematically, the causal(Barukčić, 2011a,b, 2012) relationship (Barukčić, 1989,
1997, 2005, 2016b, 2017a,c, 2021c) between a cause Ut (German: Ursache) and an effect Wt (German:
Wirkung), denoted by k(Ut, Wt), is defined at each single(Thompson, 2006) Bernoulli trial t in terms
of statistics and probability theory 18 , 19 , 20 as

k (U t,W t)≡
σ (U t,W t)

σ (U t)×σ (W t)

≡ p(U t∧W t)− p(U t)× p(W t)
2
√

(p(U t)× (1− p(U t)))× (p(W t)× (1− p(W t)))

(164)

where σ (Ut , Wt) denotes the co-variance between a cause Ut and an effect Wt at every single
Bernoulli trial t, σ (Ut) denotes the standard deviation of a cause Ut at the same single Bernoulli trial
t, σ (Wt) denotes the standard deviation of an effect Wt at same single Bernoulli trial t. Table 26
illustrates the theoretically possible relationships between a cause and an effect.

Table 26. Sample space and the causal relationship k

Effect Bt
TRUE FALSE

Cause TRUE p(at) p(bt) p(Ut)
At FALSE p(ct) p(dt) p(Ut)

p(Wt) p(Wt) +1

However, even if one thinks to recognise the trace of Bravais (Bravais, 1846) (1811-1863) - Pear-
son’s (1857-1936) “product-moment coefficient of correlation”(Galton, 1877, Pearson, 1896) inside
the causal relationship k (Barukčić, 1989, 1997, 2005, 2016b, 2017a,c) both are completely different.
According to Pearson: “The fundamental theorems of correlation were for the first time and almost
exhaustively discussed by B r a v a i s (‘Analyse mathematique sur les probabilities des erreurs de
situation d’un point.’ Memoires par divers Savans, T. IX., Paris, 1846, pp. 255-332) nearly half
a century ago.”(Pearson, 1896) Neither does it make much sense to elaborate once again on the is-
sue causation(Blalock, 1972) and correlation, since both are not identical (Sober, 2001) nor does it
make sense to insist on the fact that “Pearson’s philosophy discouraged him from looking too far be-
hind phenomena.”(Haldane, 1957) Whereas it is essential to consider that the causal relationship k,
in contrast to Pearson’s product-moment coefficient of correlation(Pearson, 1896) or to Pearson’s phi

18Ilija Barukčić, ”The Mathematical Formula of the Causal Relationship k,” International Journal of Applied Physics and Mathe-
matics vol. 6, no. 2, pp. 45-65, 2016. https://doi.org/10.17706/ijapm.2016.6.2.45-65

19Barukčić, Ilija. (2015). The Mathematical Formula Of The Causal Relationship k. https://doi.org/10.5281/zenodo.3944666
20Ilija Barukčić. The causal relationship k. MATEC Web Conf., 336 (2021) 09032 DOI:

https://doi.org/10.1051/matecconf/202133609032
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coefficient(Pearson, 1904b), is defined at every single Bernoulli trial t. This might be a very small
difference. However, even a small difference might determine a difference. However, in this context
and in any case, this small difference makes(Barukčić, 2018a) the difference.
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2.4. Axioms

Whether science needs new and obviously generally valid statements (axioms) which are able to
assure the truth of theorems proved from them may remain an unanswered question. In order to be
accepted, a new axiom candidate (see Easwaran, 2008) should be at least as simple as possible and
logically consistent to enable advances in our knowledge of nature. The importance of axioms is par-
ticularly emphasized by Albert Einstein. “Die wahrhaft großen Fortschritte der Naturerkenntnis
sind auf einem der Induktion fast diametral entgegengesetzten Wege entstanden.” (see Einstein,
1919, p. 17). In general, lex identitatis, lex contradictionis and lex negationis have the potential to
denote the most simple, the most general and the most far-reaching axioms of science, the foundation
of our today’s and of our future scientific inquiry.

2.4.1. Principium identitatis (Axiom I)

Principium identitatis or lex identitatis or axiom I, is closely related to central problems of meta-
physics, epistemology and of science as such. It turns out that it is more than rightful to assume that

+1≡+1 (165)

is true, otherwise there is every good reason to suppose that nothing can be discovered at all.

Identity as the epitome of a self-identical or of self-reference is at the same time different from dif-
ference, identity is free from difference, identity is not difference, identity is at the same time the other
of itself, identity is non-identity. Identity as simple equality with itself is determined by a non-being,
by a non-being of its own other, by a non-being of difference, identity is different from difference.
Identity is in its very own nature different and is in its own self the opposite of itself (symmetry). It is
equally

−1≡−1 (166)

In general, +1 and -1 are distinguished, however these distinct are related to one and the same 1.
Identity as a vanishing of otherness, therefore, is this distinguishedness in one relation. It is

0≡+1−1≡ 0×1≡ 0 (167)

Identity, as the unity of something and its own other is in its own self a separation from difference,
and as a moment of separation might pass over into an equivalence relation which itself is reflexive,
symmetric and transitive. Nonetheless, backed by thousands of years of often bitter human experience,
the scientific development has taught us all that human knowledge is relative too. Even if experiments
and other suitable proofs are of help to encourage us more and more in our belief of the correctness of
a theory, it is difficult to prove the correctness of a theorem or of a theory et cetera once and for all.
The challenge for all the science is the need to comply with Einstein’s position: “Niemals aber kann
die Wahrheit einer Theorie erwiesen werden. Denn niemals weiß man, daß auch in Zukunft
eine Erfahrung bekannt werden wird, die Ihren Folgerungen widerspricht...” (Einstein, 1919).
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Albert Einstein’s position translated into English: ‘But the truth of a theory can never be proven.
For one never knows if future experience will contradict its conclusion; and furthermore, there are
always other conceptual systems imaginable which might coordinate the very same facts.’Our human
experience tells us that everything in life is more or less transitory, and that nothing lasts. As a result
of our knowledge and experience, several scientific theories have a glorious past to look back on, but
all the glory of such scientific theories might remain in the past if scientist don’t continue to innovate.
In a word, theories can be refuted by time.

“No amount of experimentation can ever prove me right;
a single experiment can prove me wrong.”

(Albert Einstein according to: Robertson, 1998, p. 114)

In the light of the foregoing, it is clear that appropriate axioms and conclusions derived from the
same are a main logical foundation of any ‘theory’.

“Grundgesetz (Axiome) und Folgerungen zusammen bilden das was man eine ‘Theorie’ nennt.
”

(Einstein, 1919)

However, another point is worth being considered again. One single experiment can be enough to
refute a whole theory. Albert Einstein’s (1879-1955) message translated into English as: Basic law
(axioms) and conclusions together form what is called a ‘theory’ has still to get round. However,
an axiom as a free creation of the human mind which precedes all science should be like all other
axioms, as simple as possible and as self-evident as possible. Historically, the earliest documented
use of the law of identity can be found in Plato’s dialogue Theaetetus (185a) as “... each of the two
is different from the other and the same as itself ”21 . However, Aristotle (384–322 B.C.E.), Plato’s
pupil and equally one of the greatest philosophers of all time, elaborated on the law of identity too. In
Metaphysica, Aristotle wrote:

“... all things ... have some unity and identity. ”

(see Aristotle, of Stageira (384-322 B.C.E), 1908, Metaphysica, Chapter IV, 999a, 25-30, p. 66)

21Plato’s dialogue Theaetetus (185a), p. 104.
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In Prior Analytics, 22 , 23 Aristotle, a tutor of Alexander, the thirteen-year-old son of Philip, the king of
Macedon, is writing: “When A applies to the whole of B and of C, and is other predicated of nothing
else, and B also applies to all C, A and B must be convertible. For since A is stated only of B and
C, and B is predicated both of itself and of C, it is evident that B will also be stated of all subjects
of which A is stated, except A itself. ”24 , 25 For the sake of completeness, it should be noted at the
outset that Aristotle himself preferred the law of contradiction and the law of excluded middle as
examples of fundamental axioms. Nonetheless, it is worth noting that lex identitatis is an axiom too,
which possess the potential to serve as the most basic and equally the most simple axiom of science
but has been treated by Aristotle in an inadequate manner without having any clear and determined
meaning for Aristotle himself. Nonetheless, something which is really just itself is equally different
from everything else. In point of fact, is such an equivalence (Degen, 1741) which everything has to
itself inherent or must the same be constructed by human mind and consciousness. Can and how can
something be identical with itself (Förster and Melamed, 2012, Hegel, Georg Wilhelm Friedrich,
1812a, Koch, 1999, Newstadt, 2015) and in the same respect different from itself. An increasingly
popular view on identity is the one advocated by Gottfried Wilhelm Leibniz (1646-1716):

“Chaque chose est ce qu’elle est. Et dans autant d’exemples qu’on voudra
A est A,

B est B. ”
(Leibniz, 1765, p. 327)

or A = A, B = B or +1 = +1. In other words, a thing is what it is (Leibniz, 1765, p. 327). Leib-
niz’ principium identitatis indiscernibilium (p.i.i.), the principle of the indistinguishable, occupies a
central position in Leibniz’ logic and metaphysics and was formulated by Leibniz himself in different
ways in different passages (1663, 1686, 1704, 1715/16). All in all, Leibniz writes:

“C’est
le principe des indiscernables,

en vertu duquel
il ne saurait exister dans la nature deux êtres identiques.

...
Il n’y a point deux individus indiscernables. ”
(see Leibniz, Gottfried Wilhelm, 1886, p. 45)

Exactly in complete compliance with Leibniz, Johann Gottlieb Fichte (1762 - 1814) elaborates on this
subject as follows:

22Aristotle, Prior Analytics, Book II, Part 22, 68a
23Kenneth T. Barnes. Aristotle on Identity and Its Problems. Phronesis. Vol. 22, No. 1 (1977), pp. 48-62 (15 pages)
24Aristotle, Prior Analytics, Book II, Part 22, 68a, p. 511.
25Ivo Thomas. On a passage of Aristotle. Notre Dame J. Formal Logic 15(2): 347-348 (April 1974). DOI: 10.1305/ndjfl/1093891315
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“Each thing is what it is ;
it has those realities which are posited when it is posited,

(A = A.) ”
(Fichte, 1889)

Georg Wilhelm Friedrich Hegel (1770 – 1831) himself objected the Law of Identity by claiming that
“A = A is ... an empty tautology. ”(see Hegel, Georg Wilhelm Friedrich, 1991, p. 413) provided an
example of his own mechanical understanding of the Law of Identity. “the empty tautology: nothing
is nothing; ... from nothing only nothing becomes ... nothing remains nothing. ”(see Hegel, Georg
Wilhelm Friedrich, 1991, p. 84). Nonetheless, Hegel preferred to reformulate an own version of
Leibniz principium identitatis indiscernibilium in his own way by writing that “All things are different,
or: there are no two things like each other. ”(see Hegel, Georg Wilhelm Friedrich, 1991, p. 422).
Much of the debate about identity is still a matter of controversy. This issue has attracted the attention
of many authors and has been discussed by Hegel too. In this context, it is worth to consider Hegel’s
radical position on identity.

“The other expression of the law of identity: A cannot at the same time be A and not-A, has a
negative form; it is called
the law of contradiction. ”

(Hegel, Georg Wilhelm Friedrich, 1991, p. 416)

We may, usefully (see Barukčić, 2019a), state Russell’s position with respect to the identity law as
mentioned in his book ‘The problems of philosophy ’ (see Russell, 1912). In particular, according to
Russell,

“...principles have been singled out by tradition under the name of ‘Laws of Thought.’ They are as
follows:

(1) The law of identity: ‘Whatever is,is.
(2)The law of contradiction: ‘Nothing can both be and not be.’

(3) The law of excluded middle: ‘Everything must either be or not be.’
These three laws are samples of self-evident logical principles, but are not really more fundamental
or more self-evident than various other similar principles: for instance, the one we considered just
now, which states that what follows from a true premise is true. The name ‘laws of thought’ is also
misleading, for what is important is not the fact that we think in accordance with these laws, but the

fact that things behave in accordance with them; ”

(see Russell, 1912, p. 113)

Russell’s critique, that we tend too much to focus only on the formal aspects of the ‘Laws of Thoughts’
with the consequence that “... we thing in accordance with these laws” (see Russell, 1912, p. 113) is
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justified. Judged solely in terms of this aspect, it is of course necessary to think in accordance with the
‘Laws of Thoughts’. But this is not the only aspect of the ‘Laws of Thoughts’. The other and may be
much more important aspect of these ‘Laws of Thoughts’is the fact that quantum mechanical objects
or that “... things behave in accordance with them” (see Russell, 1912, p. 113).

2.4.2. Principium contradictionis (Axiom II)

Principium contradictionis or lex contradictionis 26 , 27 , 28 or axiom II, the other of lex identitatis,
the negative of lex identitatis, the opposite of lex identitatis, a complementary of lex identitatis, can be
expressed mathematically as

+0≡ 0×1≡+1 (168)

In addition to the above, from the point of view of mathematics, axiom II (equation 168) is equally the
most simple mathematical expression and formulation of a contradiction. However, there is too much
practical and theoretical evidence that a lot of ‘secured’mathematical knowledge and rules differ too
generously from real world processes, and the question may be asked whether mathematical truths can
be treated as absolute truths at all. Many of the basic principle of today’s mathematics allow every
single author defining the real world events and processes et cetera in a way as everyone likes it for
himself. Consequentially, a resulting dogmatic epistemological subjectivism and at the end agnosticism
too, after all, is one of the reasons why we should rightly heed the following words of wisdom of Albert
Einstein.

“I don’t
believe in

mathematics.”
(Albert Einstein cited according to Brian, 1996, p. 76)

In the long term, however, the above attitude of mathematics is not sustainable. History has taught us
time and time again that objective reality has the potential to correct wrong human thinking slowly but
surely, and many more than this. Objective reality has demonstrably corrected wrong human thinking
again and again in the past.

26Horn, Laurence R., ”Contradiction”, The Stanford Encyclopedia of Philosophy (Winter 2018 Edition), Edward N. Zalta (ed.), URL
= https://plato.stanford.edu/archives/win2018/entries/contradiction/.

27Barukčić I. Aristotle’s law of contradiction and Einstein’s special theory of relativity. Journal of Drug Delivery and Therapeutics
(JDDT). 15Mar.2019;9(2):125-43. https://jddtonline.info/index.php/jddt/article/view/2389

28Barukčić, Ilija. (2020, December 28). The contradiction is exsiting objectively and real (Version 1). Zenodo.
https://doi.org/10.5281/zenodo.4396106
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Despite all the adversities, it is necessary and crucial to consider that a self-identical as the opposite
of itself is no longer only self-identity but a difference of itself from itself within itself. In other
words, “All things are different, or: there are no two things like each other ... is, in fact, opposed
to the law of identity ...”(see Hegel, Georg Wilhelm Friedrich, 1991, p. 422) Each on its own and
without any respect to the other is distinctive within itself and from itself and not only from another.
As the opposite of its own something, is no longer only self-identity, but also a negation of itself out
of itself and therefore a difference of itself from itself within itself. In other words, in opposition, a
self-identical is able to return into simple unity with itself, with the consequence that even as a self-
identical the same self-identical is inherently self-contradictory. A question of fundamental theoretical
importance is, however, why should something be itself and at the same time the other of itself, the
opposite of itself, not itself? Is something like this even possible at all and if so, why and how? These
and similar questions have occupied many thinkers, including Hegel.

“Something is therefore
alive only in so far as it contains contradiction within it,

and moreover is this power to
hold and endure the contradiction within it. ”

(see Hegel, Georg Wilhelm Friedrich, 1991, p. 440)

However, as directed against identity, contradiction itself is also at the same time a source of self-
changes of a self-identical out of itself.

“... contradiction
is the root of all movement and vitality;

it is only in so far as something has a contradiction within it
that it moves, has an urge and activity. ”

(see Hegel, Georg Wilhelm Friedrich, 1991, p. 439)

The further advance of science will throw any contribution to scientific progress of each of us back
into scientific insignificance, as long as principium contradictionis is not given enough and the right
attention. The contradiction 29 is existing objectively and real and is the heartbeat of every self-
identical. We have reason to be delighted by the fact that very different aspects of principium con-
tradictionis have been examined since centuries from different angles by various authors. According
to Aristotle, principium contradictionis applies to everything that is, it is the first and the firmest of all
principles of philosophy.

29Barukčić, Ilija. (2020, December 28). The contradiction is existing objectively and real (Version 1). Zenodo.
https://doi.org/10.5281/zenodo.4396106
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“... the same ... cannot at the same time belong and not belong to the same
... in the same respect ... This, then, is

the most certain of all principles ”

(see Aristotle, of Stageira (384-322 B.C.E), 1908, Metaph., IV, 3, 1005b, 16–22)

Principium contradictionis or axiom II has many facets. As long as we follow Leibniz in this re-
gard, we should consider that “Le principe de contradiction est en general ... ”(Leibniz, 1765, p.
327). Scientist inevitably have false beliefs and make mistakes. In order to prevent scientific results
from falling into logical inconsistency or logical absurdity, it is necessary to posses among other the
methodological possibility to start a reasoning with a (logical) contradiction too. However and in con-
trast to the way of reasoning with inconsistent premises as proposed by para-consistent (Carnielli and
Marcos, 2001, da Costa, 1974, 1958, Priest, 1998, Priest et al., 1989, Quesada, 1977) and other logic,
in the absence of technical and other errors of reasoning, the contradiction itself need to be preserved.
In other words, from a contradiction does not anything follows but the contradiction itself while
the theoretical question is indeed justified “What is so Bad about Contradictions? ” (Priest, 1998).
Historically, the principle of (deductive) explosion (Carnielli and Marcos, 2001, Priest, 1998, Priest
et al., 1989), coined by 12th-century French philosopher William of Soissons, demand us to accept that
anything, including its own negation, can be proven or can be inferred from a contradiction. In short,
according to ex falso sequitur quodlibet, a (logical) contradiction implies anything. Respecting the
principle of explosion, the existence of a contradiction (or the existence of logical inconsistency) in a
scientific theorem, rule et cetera is disastrous. However, the historical development of science shows
that scientist inevitably revise the theories, false positions and claims are identified once and again, and
we all make different kind of mistakes. In order to avert disproportionately great damage to science
and to prevent reducing science into pure subjective belief, a negation of the principle of explosion is
required. Nonetheless, a justified negation of the ex contradictione quodlibet principle (Carnielli
and Marcos, 2001) does not imply the correctness of para consistent logic (Carnielli and Marcos,
2001, da Costa, 1974, 1958, Priest, 1998, Priest et al., 1989, Quesada, 1977) as such as advocated es-
pecially by the Peruvian philosopher Francisco Miró Quesada (Quesada, 1977) and other (Carnielli
and Marcos, 2001, da Costa, 1974, 1958, Priest, 1998, Priest et al., 1989). In general, scientific theories
appear to progress from lower and simpler to higher and more complex levels. However, high level
theories cannot be taken for granted because high level theories are grounded on a lot of assumptions,
definitions and other procedures and may rest upon too much erroneous stuff even if still not identified.
Therefore, it should be considered to check at lower at simpler levels like with like.
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2.4.2.1. Zero power zero

Theorem 2.1. In general, it is

+0+2 ≡+0 (169)

is false.

Proof by direct proof. The premise

+0≡+1 (170)

is false. In the following, any rearrangement of the premise which is free of (technical) errors, need to
end up at a contradiction. In other words, the contradiction will be preserved. We obtain

+0×+0≡+1×+0 (171)

Equation 171 becomes

+0+2 ≡+0 (172)

□

2.4.2.2. Zero divided by zero

Theorem 2.2. In general,

1
0
≡ 0

0
(173)

is false.

Proof by direct proof. If the premise

+1≡+0 (174)

is false, then the relationship

1
0
≡ 0

0
(175)

is also false.

□
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2.4.3. Principium negationis (Axiom III)

Lex negationis or axiom III, is often mismatched with simple opposition. However, from the point
of view of philosophy and other sciences, identity, contradiction, negation and similar notions are
equally mathematical descriptions of the most simple laws of objective reality. What sort of natural
process is negation at the end? Mathematically, we define principium negationis or lex negationis or
axiom III as

Negation(0) ×0≡ ¬(0)×0≡+1 (176)

where ¬ denotes (logical (Boole, 1854) or natural) negation (Ayer, 1952, Förster and Melamed,
2012, Hedwig, 1980, Heinemann, Fritz H., 1943, Horn, 1989, Koch, 1999, Kunen, 1987, Newstadt,
2015, Royce, 1917, Speranza and Horn, 2010, Wedin, 1990b). In this context, there is some evidence
that

Negation(1) ×1≡ ¬(1)×1 = 0 (177)

Logically, it follows that
Negation(1) ≡ 0 (178)

In the following we assume that axiom I is universal. Under this assumption, the following theorem
follows inevitably.

Theorem 2.3 (Zero divided by zero). According to classical logic, it is

0
0
≡ 1 (179)

Proof by direct proof. The premise

1≡ 1 (180)

is true. It follows that

0≡ 0
≡ 0×1

(181)

In the following, we rearrange the premise (see equation 176, p. 79). We obtain

0× (Negation(0) ×0)≡ 0 (182)

Equation 182 changes slightly (see equation 177, p. 79). It is

(Negation(1) ×1)× (Negation(0) ×0)≡ 0 (183)

Equation 183 demands that

(Negation(1) )× (Negation(0) )×0≡ 0 (184)
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Equation 184 is logically possible (see equation 167, p. 71) only if

(Negation(1) )× (Negation(0) )≡ 1 (185)

(see theorem 2.1, equation 169) whatever the meaning of Negation(1) or of Negation(0) might be,
equation 185 demands that

Negation(0) ≡ 1
Negation(1)

(186)

and that

Negation(1)≡ 1
Negation(0)

(187)

Equation 186 simplifies as (see equation 178, p. 79)

Negation(0) ≡ +1
Negation(1)

≡ +1
+0

(188)

It follows that
¬(0)×0≡ 1

0
×0≡ 0

0
≡ 1 (189)

To bring it to the point. Classical logic, assumed as generally valid, demands that

0
0
≡ 1 (190)

□

Concepts like identity, difference, negation, opposition et cetera engaged the attention of scholars
at least over the last twenty-three centuries (see also Horn, 1989, Speranza and Horn, 2010). As
long as we first and foremost follow Josiah Royce, negatio or negation “is one of the simplest and
most fundamental relations known to the human mind. For the study of logic, no more important
and fruitful relation is known.” (see also Royce, 1917, p. 265) But, do we really know what, for
sure, what negation is? Based on what we know about negation, Aristotle (see also Wedin, 1990a)
has been one of the first to present a theory of negation, which can be found in discontinuous chunks
in his works the Metaphysics, the Categories, De Interpretatione, and the Prior Analytics (see also
Horn, 1989, p. 1). Negation (see also Newstadt, 2015) as a fundamental philosophical concept
found its own very special melting point especially in Hegel’s dialectic and is more than just a formal
logical process or operation which converts true to false or false to true. Negation as such is a natural
process too and equally ‘an engine of changes of objective reality ” (see also Barukčić, 2019a).
However, it remains an open question to establish a generally accepted link between this fundamental
philosophical concept and an adequate counterpart in physics, mathematics and mathematical statistics
et cetera. Especially the relationship between creation and conservation or creatio ex nihilio (see
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also Donnelly, 1970, Ehrhardt, 1950, Ford, 1983), determination and negation (see also Ayer, 1952,
Hedwig, 1980, Heinemann, Fritz H., 1943, Kunen, 1987) has been discussed in science since ancient
(see also Horn, 1989, Speranza and Horn, 2010) times too. Why and how does an event occur or why
and how is an event created (creation), why and how does an event maintain its own existence over
time (conservation)? The development of the notion of negation leads from Aristotle to Meister Eckhart
(see also Eckhart, 1986) von Hochheim (1260-1328), commonly known as Meister Eckhart (see also
Tsopurashvili, 2012) or Eckehart, to Spinoza (1632 – 1677), to Immanuel Kant (1724-1804) and finally
to Georg Wilhelm Friedrich Hegel (1770-1831) and other authors too. One point is worth being noted,
even if it does not come as a surprise, it was especially Benedict de Spinoza (1632 – 1677) as one of the
philosophical founding fathers of the Age of Enlightenment who addressed the relationship between
determination and negation in his lost letter of June 2, 1674 to his friend Jarig Jelles (see also Förster
and Melamed, 2012) by the discovery of his fundamental insight that “ determinatio negatio est”
(see also Spinoza, 1674, p. 634). Hegel went even so far as to extended the slogan raised by Spinoza
into to “Omnis determinatio est negatio” (see also Hegel, Georg Wilhelm Friedrich, 1812b, 2010, p.
87). Finally, it did not take too long, and the notion of negation entered the world of mathematics
and mathematical logic at least with Boole’s (see also Boole, 1854) publication in the year 1854.
“Let us, for simplicity of conception, give to the symbol x the particular interpretation of men, then
1 - x will represent the class of ’not-men’.” (see also Boole, 1854, p. 49). Finally, the philosophical
notion negation found its own way into physics by the contributions of authors like Woldemar Voigt
(see Voigt, 1887), George Francis FitzGerald (see FitzGerald, 1889), Hendrik Antoon Lorentz (see
Lorentz, 1892, 1899), Joseph Larmor (see Larmor, 1897), Jules Henri Poincaré (see Poincaré, 1905)
and Albert Einstein (see Einstein, 1905) by contributions to the physical notion “Lorentz factor”.

3. Results

3.1. Normalisation of a and c

Theorem 3.1 (Normalisation of a and c). In general, it is

+1≡ 1− c
B

(191)

Proof by direct proof. The premise

+1≡+1 (192)

is true. In the following, we rearrange this premise. We obtain

a≡ a (193)

Adding term c, it is

a+ c≡ a+ c (194)
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According to our definition, it is a+ c≡ B. Eq. 194 becomes
a
B
+

c
B
≡ 1 (195)

Rearranging 195, it is
a
B
≡ 1− c

B
(196)

Assuming a necessary condition relationship between events A and B (conditio sine qua non), it is
a
B
=+1. Eq. 196 becomes

1≡ 1− c
B

(197)

□

3.2. Normalisation of c and d

Theorem 3.2 (Normalisation of c and d). In general, it is

+1≡ 1− c
A (198)

Proof by direct proof. The premise

+1≡+1 (199)

is true. In the following, we rearrange this premise. We obtain

c≡ c (200)

Adding term d, it is

c+d ≡ c+d (201)

According to our definition, it is c+d ≡ A. Eq. 201 becomes
c
A
+

d
A
≡ 1 (202)

Rearranging 202, it is
d
A
≡ 1− c

A
(203)

Assuming a necessary condition relationship between events A and B (conditio sine qua non), it is
d
A
=+1. Eq. 203 becomes

1≡ 1− c
A (204)

□
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3.3. Index of unfairness I

Theorem 3.3 (Index of unfairness I). In general, it is

IOU ≡ A+B
N
−1 (205)

Proof by direct proof. The premise

+1≡+1 (206)

is true. In the following, we rearrange the premise (see equation 197). From the point of view of an
observational study it is

1− c
B
≡+1 (207)

Equation 207 is rearranged further. From the point of view of an experimental study (see equation
204), it is

1− c
B
≡ 1− c

A (208)

The study design of both studies should ensure that the same results can be achieved. Simplifying
equation 208 it is

c
B
≡ c

A (209)

Equation 209 is divided by c. Under conditions where c = 0, it is
0
0
= 1 (Barukčić, 2018c, 2019b,

2020e, Barukčić and Ufuoma, 2020b, Barukčić and Barukčić, 2016). We obtain

1
B
≡ 1

A
(210)

or

A≡ B (211)

Equation 211 is rearranged as

N−A≡ B (212)

or
N ≡ A+B (213)

and
1≡ A+B

N
(214)
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or
0≡ A+B

N
−1 (215)

One objective of the design of a study which investigates a necessary condition relationship between
events A and B (conditio sine qua non) should be to ensure as much as possible an index of unfairness
(see also Barukčić, 2019c) equal to

IOU ≡ A+B
N
−1≡ 0 (216)

□

3.4. Normalisation of a and b

Theorem 3.4 (Normalisation of a and b). In general, it is

1≡ 1− b
B

(217)

Proof by direct proof. The premise

+1≡+1 (218)

is true. In the following, we rearrange this premise. We obtain

a≡ a (219)

Adding term b, it is

a+b≡ a+b (220)

According to our definition, it is a+b≡ A. Eq. 220 becomes

a
A
+

b
A
≡ 1 (221)

Rearranging 221, it is

a
A
≡ 1− b

A
(222)

Assuming a sufficient condition relationship between events A and B, it is
a
A
=+1. Eq. 222 becomes

1≡ 1− b
A

(223)

□
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3.5. Normalisation of b and d

Theorem 3.5 (Normalisation of b and d). In general, it is

1≡ 1− b
B

(224)

Proof by direct proof. The premise

+1≡+1 (225)

is true. In the following, we rearrange this premise. We obtain

b≡ b (226)

Adding term d, it is

b+d ≡ b+d ≡ B (227)

According to our definition, it is b+d ≡ B. Equation 227 becomes

b
B
+

d
B
≡ 1 (228)

Rearranging 228, it is

d
B
≡ 1− b

B
(229)

Assuming a sufficient condition relationship (conditio per quam) between events A and B, it is
d
B
=+1.

Equation 229 becomes

1≡ 1− b
B

(230)

□

3.6. Index of unfairness II

Theorem 3.6 (Index of unfairness II). In general, it is

IOU ≡ A+B
N
−1≡ 0 (231)
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Proof by direct proof. The premise

+1≡+1 (232)

is true. In the following, we rearrange the premise (see equation 223). From the point of view of an
experimental study it is

1− b
A
≡+1 (233)

Equation 233 is rearranged further. From the point of view of an observational study (see equation
230), it is

1− b
A
≡ 1− b

B
(234)

Simplifying equation 234 it is

b
A
≡ b

B
(235)

Equation 235 is divided by b. Under conditions where b = 0, it is
0
0
= 1 (Barukčić, 2018c, 2019b,

2020e, Barukčić and Ufuoma, 2020b, Barukčić and Barukčić, 2016). We obtain

1
A
≡ 1

B
(236)

or

B≡ A (237)

Equation 237 is rearranged as

N−B≡ A (238)

or
N ≡ A+B (239)

and
1≡ A+B

N
(240)

or
0≡ A+B

N
−1 (241)

One objective of the design of a study which investigates a sufficient condition relationship (conditio
per quam) between events A and B should be to ensure an index of unfairness (see also Barukčić,
2019c) as much as possible equal to

IOU ≡ A+B
N
−1≡ 0 (242)

□
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4. Discussion

In practice, comparability of medical studies of different types or even of the same type is not
possible as straightforward as it could be or as it should be. Even an additional simple statement of
p-values or confidence intervals is not sufficient to be able to rely upon the results published by a
scientific article. Out of the many, different approaches that can be taken towards the investigation of a
certain scientific issue, it is necessary to ensure minimum standard conditions thus that different study
groups can achieve the same scientific results. A certain relationship between event A and event B
given independently and outside of human mind and consciousness, independently of any study and
study design, is the way, the same is. From the point of view of an experimental study, the relationship
between an event A and another event B should to be the same as seen from the point of view of an
observational study. In this respect, it is important to remember that a contradiction is neither possible
nor desirable. Unfortunately - since one is theory and the other is practice - it might be necessary to
conduct studies out at least in compliance with conditions outlined before. One of these conditions is
an index of unfairness (IOU) equal to 0 or very near to 0.

5. Conclusion

Investigation of necessary or sufficient conditions require an index of unfairness of IOU = 0.
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Private note

The definition section of a paper need not and does not necessarily contain new scientific aspects. Above all, it also serves to better

understand a scientific publication, to follow every step of the arguments of an author and to explain in greater details the fundamentals

on which a publication is based. Therefore, there is no objective need to force authors to reinvent a scientific wheel once and again unless

such a need appears obviously factually necessary. The effort to write about a certain subject in an original way in multiple publications

does not exclude the necessity simply to cut and paste from an earlier work, and has nothing to do with self-plagiarism. However, such

an attitude cannot simply be transferred to the sections’ introduction, results, discussion and conclusions et cetera.
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10.1063/1.3567453. AQT. Web of Science. Full text: American Institute of Physics.
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Ilija Barukčić. Anti-Bell - Refutation of Bell’s theorem: In: Quantum Theory: Reconsideration of Foundations-6 (QTRF6), Växjö,
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Hirschwald, Berlin, 1840. URL https://doi.org/10.11588/diglit.15175. University Heidelberg urn:nbn:de:bsz:16-diglit-
151756.

Boris Hennig. The Four Causes. The Journal of Philosophy, 106(3):137–160, March 2009. doi: 10.5840/jphil200910634.

Hessen, Johannes. Das Kausalprinzip. Verlag: Filser, Augsburg, 1928.

Germund Hesslow. Two Notes on the Probabilistic Approach to Causality. Philosophy of Science, 43(2):290–292, June 1976. ISSN
0031-8248, 1539-767X. doi: 10.1086/288684. URL https://www.journals.uchicago.edu/doi/10.1086/288684.

Germund Hesslow. Causality and Determinism. Philosophy of Science, 48(4):591–605, 1981. ISSN 0031-8248. URL https://www.
jstor.org/stable/186838.

Austin Bradford Hill. The environment and disease: association or causation? Proceedings of the Royal Society of Medicine, 58:
295–300, January 1965.

Holbach, Paul Henri Thiry Baron de. Système de la nature, ou des loix du monde physique et du monde moral. Première partie. Par Jean
Baptiste de Mirabaud, Londres, 1770. URL https://doi.org/10.3931/e-rara-14756. Zenodo.

Laurence R. Horn. A natural history of negation. University of Chicago Press, Chicago, 1989. ISBN 978-0-226-35337-1. ISBN:
978-0-226-35337-1.

Christiaan Huygens and Frans van Schooten. De ratiociniis in ludo alae: In: Exercitationum mathematicarum liber primus [- quintus].
ex officina Johannis Elsevirii, Lugdunum Batavorum (Leiden, The Netherlands), January 1657. doi: 10.3931/e-rara-8813. Free full
text: e-rara, Zurich, CH.

Justice Matthews, Mr. Hayes, by next Friend, v. Michigan Central R. Co., 111 U.S. 228, 1884. Argued March 19, 1884. Decided April
7. U. S. Supreme Court, 1884. U. S. Supreme Court, 1884.

Truman Lee Kelley. Statistical Method, volume 1. Macmillan, 1924.

Mirjam J. Knol. Down with odds ratios: risk ratios in cohort studies and randomised clinical trials (article in dutch). Nederlands
Tijdschrift Voor Geneeskunde, 156(28):A4775, 2012. ISSN 1876-8784. PMID: 22805792.

Anton Friedrich Koch. Die Selbstbeziehung der Negation in Hegels Logik. Zeitschrift für philosophische Forschung, 53(1):1–29, 1999.
ISSN 0044-3301. URL www.jstor.org/stable/20484868.

Robert Koch. Neue Untersuchungen über die Mikroorganismen bei infektiösen Wundkrankheiten. Deutsche Medizinische Wochenschrift,
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Günter Kröber. Der Konditionalismus und seine Kritik in der sowjetischen Wissenschaft. Wissenschaftliche Zeitschrift der Karl-Marx
Universität Leipzig, 10(2):137–153, 1961.

Kenneth Kunen. Negation in logic programming. The Journal of Logic Programming, 4(4):289–308, December 1987. ISSN 0743-1066.
doi: 10.1016/0743-1066(87)90007-0. URL http://www.sciencedirect.com/science/article/pii/0743106687900070.

Harold Langsam. Kant, Hume, and Our Ordinary Concept of Causation. Philosophy and Phenomenological Research, 54(3):625,
September 1994. ISSN 00318205. doi: 10.2307/2108584. URL https://www.jstor.org/stable/2108584?origin=crossref.
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