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Abstract:
Background:
We may ask a number of questions about the nature of the relationship between geometry and proba-
bility. Can both accurately model objective reality at all while the same is changing permanently?
Methods:
Various aspects of the relationship between geometry and probability have been re-investigated while
relying on a hypothetico deductive method.
Results:
It turns out that an interplay between two basic theorems of geometry, Euclid’s theorem and
Pythagorean theorem, is a possible theoretical foundation of probability theory too.
Conclusion:
Geometry as a framework of systematic logical thinking is unified with probability theory.
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1. Introduction

What is geometry, what is probability? Can we identify anything both have in common? A satis-
factory answer of this question is complicated by the fact that there are various alternative formaliza-
tions, especially of probability theory. Moreover, as is generally known, some of the interpretations
of probability do not obey all of Kolmogorov’s axioms. Thus far, is it at the end, as Bertrand Russell
(1872-1970) once remarked?

“Probability is the most important concept in modern science, especially as nobody has the slightest
notion what it means. ”

(Bertrand Russell, 1929 Lecture cited in Bell, E. T., 1945, p. 587) 1

Probability theory is a mathematical and conceptual framework which focuses on the investigation
and description of (one part or the whole) objective reality from its own methodological point of view.
However, geometry itself is a mathematical framework too, which is investigating and describing (the
same part or the same whole) objective reality with its own and many times completely different
scientific methods. What both mathematical frameworks have in common is the focus on a very precise
description of (one part of) objective reality. Therefore, are any contradictory results in this context
justified? In order to avoid any contradictions between these two scientific frameworks, it is necessary
to clarify that the unity of nature is at the end the basis for the unity of science and of our human
knowledge. The same unity of nature forces us every day once and again to avoid or at least to minimise
any possible contradictions in our thinking. However, a generally accepted unification of geometry
and probability theory into a one and single, powerful mathematical framework is nowhere near in
sight. Nonetheless, painstaking investigations carried out on probabilistic geometry 2 , 3 and geometric
probability 4 , 5 , 6 , 7 , 8 are not completely in vain. In point of fact, especially in order to unify quantum
theory and relativity theory into a one and unique mathematical framework, such an undertaking is
desired to be successful.

1Hájek, Alan, ”Interpretations of Probability”, The Stanford Encyclopedia of Philosophy (Fall 2019 Edition), Edward N. Zalta (ed.),
URL = https://plato.stanford.edu/archives/fall2019/entries/probability-interpret/.

2Menger K. (1951). Probabilistic Geometry. Proceedings of the National Academy of Sciences of the United States of America,
37(4), 226–229. https://doi.org/10.1073/pnas.37.4.226.

3Antonı́n Špaček, Note on K. Menger’s probabilistic geometry Czechoslovak Mathematical Journal, Vol. 6 (1956), No. 1, 72–74.
URL: http://dml.cz/dmlcz/100179

4Rota, GC. Geometric probability. The Mathematical Intelligencer 20, 11–16 (1998). https://doi.org/10.1007/BF03025223
5Wendel, J. G. (1962). A Problem in Geometric Probability. MATHEMATICA SCANDINAVICA, 11, 109–112.

https://doi.org/10.7146/math.scand.a-10655
6Herbert Solomon, Geometric Probability, Society for Industrial & Applied Mathematics, U.S., 1978, 180 pages. ISBN: 978-0-

89871-025-0 (ISBN)
7Richard A.Vitale, Geometric probability Mathematical Modelling Volume 1, Issue 4, 1980, Pages 375-379

https://doi.org/10.1016/0270-0255(80)90047-0
8Henry C. Tuckwell, Chapter: Geometric probability. In: Elementary Applications of Probability Theory. Edition 2nd Edition.

First Published 1988. Imprint Chapman and Hall/CRC, ISBN 9780203758564
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2. Material and methods

Scientific knowledge and objective reality are more than interrelated. Objective reality is the foun-
dation of any scientific knowledge. Our human experience teaches us however that seen by light, grey
is never merely simply grey, and looked at from different angles, many paths may lead to climb up a
certain mountain. In general, it is appropriate to ensure as much as possible a broader consideration of
a research question and to take into account the different facets and viewpoints of an issue investigated
in order to reach a goal.

2.1. Methods

Definitions should help us to provide and assure a systematic approach to a mathematical formula-
tion of different relationships. It also goes without the need of further saying that a definition must be
logically consistent and correct.

2.1.1. Random variables

Let a random variable(Gosset, 1914) X denote something like a function defined on a probability
space, which itself maps from the sample space(Neyman and Pearson, 1933) to the real numbers.

2.1.2. The Expectation of a Random Variable

Definition 2.1 (The First Moment Expectation of a Random Variable). Summaries of an entire
distribution of a random variable(see Kolmogorov, Andreı̆ Nikolaevich, 1950, p. 22 ) X, such as the
expected value, or average value, are useful in order to identify where X is expected to be without
describing the entire distribution. For practical and other reasons, we shall limit ourselves here to
discrete random variables, while the basic properties of the expectation value of a random variable
X will not be investigated. Thus far, let X be a discrete random variable with the probability p(X).
The relationship between the first moment expectation value (see Huygens and van Schooten, 1657,
Kolmogorov, Andreı̆ Nikolaevich, 1950, LaPlace, 1812, Whitworth, 1901) of X, denoted by E(X), and
the probability p(X), is given by the equation:

E (X)≡ X × p(X)

≡ Ψ(X)×X ×Ψ
* (X)

(1)

where Ψ(X) is the wave-function (see Born, 1926, Schrödinger, Erwin Rudolf Josef Alexander,
1926) of X, Ψ* (X) is the complex conjugate wave-function of X. The first moment expectation value
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squared of a random variable X follows as

E (X)2 ≡ p(X)×X × p(X)×X

≡ p(X)× p(X)×X ×X

≡ (p(X)×X)2

≡ E (X)×E (X)

(2)

The ongoing progress with artificial intelligence has the potential to transform human society far be-
yond any imaginable border of human recognition and can help even to solve problems that otherwise
would not be tractable. No wonder, scientist and systems are confronted with large volumes of data
(big data) of various natures and from different sources. The use of tensor technology can simplify
and accelerate Big data analysis. In other words, let Xklµν . . . denote an n-th index co-variant tensor
with the probability p(Xklµν . . . ). The first moment expectation value (see Huygens and van Schooten,
1657, Kolmogorov, Andreı̆ Nikolaevich, 1950, LaPlace, 1812, Whitworth, 1901) of Xklµν . . . , denoted
by E(Xklµν . . . ), is a number defined as follows:

E
(
Xklµν . . .

)
≡ p

(
Xklµν . . .

)
×Xklµν . . . ≡ p

(
Xklµν . . .

)
∩Xklµν . . . (3)

while × or ∩ might denote the commutative multiplications of tensors. The first moment expectation
value squared of a random variable X follows as

2E
(
Xklµν . . .

)
≡ p

(
Xklµν . . .

)
×Xklµν . . . × p

(
Xklµν . . .

)
×Xklµν . . .

≡ p
(
Xklµν . . .

)
× p

(
Xklµν . . .

)
×Xklµν . . . ×Xklµν . . .

≡ 2 (p
(
Xklµν . . .

)
×Xklµν . . .

)
≡ E

(
Xklµν . . .

)
×E

(
Xklµν . . .

) (4)

Definition 2.2 (The Second Moment Expectation of a Random Variable). The second(see Kol-
mogorov, Andreı̆ Nikolaevich, 1950, p. 42 ) moment expectation value (or more or less arithmetic
mean) of a (large) number of independent realizations of a random variable X follows as:

E
(
X2)≡ p(X)×X2

≡ (p(X)×X)×X

≡ E (X)×X

≡ X ×E (X)

(5)

From the point of view of tensor algebra it is

E
(

2Xklµν . . .

)
≡ p

(
Xklµν . . .

)
× 2Xklµν . . .

≡
(

p
(
Xklµν . . .

)
×Xklµν . . .

)
×Xklµν . . .

≡ E
(
Xklµν . . .

)
×Xklµν . . .

≡ Xklµν . . . ×E
(
Xklµν . . .

) (6)
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Definition 2.3 (The n-th Moment Expectation of a Random Variable). The n-th(see Barukčić,
2020a, 2021) moment expectation value of a (large) number of independent realizations of a random
variable X follows as:

E (Xn)≡ p(X)×Xn

≡ (p(X)×X)×Xn-1

≡ E (X)×Xn-1

(7)

2.1.3. Probability of a Random Variable

What is the nature of the probability of an event, or what is the relationship between probability and
geometry or between the probability of an event and notions like false or true. At a first pass, various
authors answer this question, one way or another. For authors like De Morgan, probability is only a
degree of confidence, or credences or of belief. “By degree of probability, we really mean, or ought
to mean, degree of belief” (see De Morgan, 1847, p. 172). Such a purely subjective (or personalist
or Bayesian (see Bayes, 1763)) interpretation of probabilities as degrees of confidence, or credences
finds its own scientific opposition, moreover, in Kolmogorov’s axiomatization of probability theory.
However, perhaps we can do better, then, to think that Kolmogorov’s axiomatization of probability
theory is the last word spoken on probability theory. Nobody seriously considers that Kolmogorov’s
conceptual apparatus of probability theory has solved the basic problem of any probability theory, the
relationship between classical logic or geometry and probability theory. One very massive disadvan-
tage of Kolmogorov’s axiomatization of probability theory is that it is very silent especially on this
issue. Any unification of geometry and probability theory into one unique mathematical framework
might prove very difficult as long as we rely purely on Kolmogorov’s understanding of probability the-
ory. It’s not surprising that the probability of an event bear at least directly, and sometimes indirectly,
upon central philosophical and scientific concerns. A correct understanding of probability is one of the
most important foundational scientific problems. Now let us strengthen our position with respect to the
probability of an event. In our understanding, the probability of an event is something objectively and
real. The probability of an event is the truth value of something or the degree to which something, i.e.
a random variable X, is determined by its own expectation value. The probability p(X) of a random
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variable X follows as (see equation 1)

p(X)≡ X × p(X)

X
≡ E (X)

X
≡ p(X)

≡ X ×X × p(X)

X ×X
≡ X ×E (X)

X ×X
≡

E
(
X2)

X2

≡ E (X)

X
≡ E (X)×E (X)

X ×E (X)
≡ E (X)2

E (X2)

≡ E (X)

X
≡ E (X)×E (X)

X ×E (X)
≡ σ (X)2

X ×X × (1− p(X))
≡ σ (X)2

E (X2)

≡ Ψ(X)×Ψ
* (X)

(8)

where Ψ(X) is the wave-function of X, Ψ* (X) is the complex conjugate wave-function of X. As soon
as the probability p(X) of an event X is determined, the probability of its own other, 1 - p(X), the
complementary of X, the opposite of X, anti X, is determined too. We obtain

1− p(X)≡ 1− X × p(X)

X
≡ 1− E (X)

X
≡ X

X
− E (X)

X
≡ X −E (X)

X
≡ E (X)

X
≡ p(X)

≡ 1− X ×X × p(X)

X ×X
≡ 1− X ×E (X)

X ×X
≡ 1−

E
(
X2)

X2 ≡ X2

X2 −
E
(
X2)

X2 ≡
X2 −E

(
X2)

X2

≡ 1− E (X)

X
≡ 1− E (X)×E (X)

X ×E (X)
≡ 1− E (X)2

E (X2)

≡ 1− E (X)

X
≡ 1− E (X)×E (X)

X ×E (X)
≡ 1− σ (X)2

X ×X × (1− p(X))
≡ 1− σ (X)2

E (X2)

≡ 1−Ψ(X)×Ψ
* (X)

(9)

In our understanding, there are conditions where probability theory / statistics is related with geometry
(i.e. Pythagorean theorem, Euclid’s theorem et cetera) (see also figure 1) by the equation:

a2 ≡ E
(

X2
)

(10)

Further research should be able and might provide convincing evidence whether - and to what extent -
equation 10 makes any sense at all. However, none of this relieves us of our duty to seriously consider
the possibility of negative probabilities (see theorem 3.38 Barukčić, 2019b, pp. 67-68) like

− p(X)≡ −E (X)

−X
(11)

It is
+1 ≡ p(X)+1− p(X)≡ p(X)+ p(X)≡C (12)

as illustrated by figure 1 and equally

+1+2 ≡ (1× p(X))+(1× (1− p(X)))≡ (1× (p(X)+ p(X)))≡C2

≡ a2 +b2

≡C2

(13)
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b                      b          a                       a

✓p(X) = b               b                        a               a = ✓p(X)

1 = C     12 = 1✕(p(X) +p(X))   C = 1

C =  p(X)   + p(X) = 1

b2    = 1 ✕ p(X)            a2 = 1 ✕ p(X)

△ = ✓ (p(X) ✕ p(X))

p(X)      p(X)

Figure 1. Geometry and probability theory.

The distributions of properties of geometric objects like length, area, volume, etc. is studied by
geometric probability (see Klain and Rota, 1997, Milman, Vitali D., 2008, Solomon, 1978) too. In
other words, probability is involved in geometry. Example. Let the length of a line C be C = 10 cm.
Let X denote the length of a sub-line of C. Let X = 5 cm. The probability p(C = X ) is calculated
as p(C = X ) = 5 / 10 = 1/2. However, as can be seen by figure 1, probability and geometry are not
only deeply interrelated. In contrast to Menger’s approach to probabilistic geometry (see Menger,
1951, 2003, Milman, Vitali D., 2008, Špaček, 1956), probability theory can be defined by geometry,
completely and potentially vice versa too. The known trigonometrical functions are one geometric way
to formulate probabilities of events. In consideration of the preceding figure 1 before and the general
definition of the function sine, denoted as sin, it is

sin α ≡ a
c
≡ a

1
≡

2
√

p(X)

1
≡ 2
√

p(X) (14)

and

sin2
α ≡ (sin α)2 ≡ sin α × sin α ≡

(a
c

)
2 ≡

(a
1

)
2 ≡ a2 ≡ p(X)≡ Ψ(X)×Ψ

* (X) (15)

Against the background of figure 1 and the general definition of the function cosecant, denoted as
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csc, it is

csc α ≡ c
a
≡ 1

a
≡ 1

2
√

p(X)
(16)

and equally.

csc2
α ≡ (csc α)2 ≡ csc α × csc α ≡

(c
a

)
2 ≡

(
1
a

)
2 ≡ 1

a2 ≡ 1
p(X)

(17)

In general it is
sin α × csc α ≡+1 (18)

In the light of figure 1 above, and the definition the function cosine, denoted as cos, it is

cos α ≡ b
c
≡ b

1
≡

2
√

p(X)

1
≡ 2
√

p(X) (19)

and at the same time

cos2
α ≡ (cos α)2 ≡ cos α × cos α ≡

(
b
c

)
2 ≡

(
b
1

)
2 ≡ b2 ≡ p(X)≡ 1−Ψ(X)×Ψ

* (X) (20)

Claudius Ptolemy (c. 85 – c. 165 CE), a very influential Greek astronomers of his time, developed
a geocentric theory of our solar system (Almagest, (see Ptolemaeus, Claudius, 1952)) that prevailed
for more than 1400 years until overthrown by the heliocentric theory of Copernicus in the De revolu-
tionibus of 1543 (see Copernici, Nicolai, 1543). Ptolemy’s ‘Almagest’is a scientific text longer in use
than Isaac Newton’s Principia (see Newton, 1687). The first known astronomical observation made
by Ptolemy was on 26 March 127 while the last one was made on 2 February 141. In fact, it must be
treated as relatively sure that Ptolemy already knew about the relationship

sin2
α + cos2

α ≡+1 (21)

known as Ptolemy’s theorem (see Ptolemaeus, Claudius, 1952, Book 1, Chapter 10) which is mean-
while identified in more detail as

sin2
α + cos2

α ≡ p(X)+ p(X)≡+1 (22)

or the Pythagorean theorem in the language of trigonometry. We are justified in asking whether the
expectation value of an angle α , denoted as E(α), might be given by the equation

E (α)≡ α ×
(

sin2
α

)
(23)

whether E(α2) would be given by the equation

E
(

α
2
)
≡ α ×α ×

(
sin2

α

)
(24)

CAUSATION ISSN: 1863-9542 https://www.doi.org/10.5281/zenodo.6462825 Volume 17, Issue 6, 5–63

https://portal.issn.org/resource/ISSN/1863-9542
https://www.doi.org/10.5281/zenodo.6462825


13

Under these assumptions, the variance σ (α)2 of an angle would follow as

σ (α)2 ≡ E
(

α
2
)
−E (α)2 ≡ α ×α ×

(
sin2

α

)
×
(

1−
(

sin2
α

))
(25)

Having regard to figure 1 above and on the basis of the definition of the function secant, denoted by
sec, it is

sec α ≡ c
b
≡ 1

b
≡ 1

2
√

p(X)
(26)

and equally

sec2
α ≡ (sec α)2 ≡ sec α × sec α ≡

(c
b

)
2 ≡

(
1
b

)
2 ≡ 1

p(X)
(27)

cos α × sec α ≡+1 (28)

On the basis of a presentation by figure 1 and the known definition of the function tangent, denoted
as tan, it is

tan α ≡ sin α

cos α
≡

a
c
b
c

≡ a
b
≡

2
√

p(X)
2
√

p(X)
≡ 2

√
p(X)

p(X)
(29)

and equally

tan2
α ≡ (tan α)2 ≡ (tan α)×(tan α)≡

(
sin α

cos α

)
×
(

sin α

cos α

)
≡ sin2 α

cos2 α
≡

a2

c2

b2

c2

≡ a2

b2 ≡ p(X)

p(X)
(30)

In view of figure 1 and the definition of cotangent, denoted as cot, it is

cot α ≡ b
a
≡

2
√

p(X)
2
√

p(X)
≡ 2

√
p(X)

p(X)
(31)

Furthermore, it is

cot2
α ≡ (cot α)2 ≡ (cot α)× (cot α)≡ cot2

α ≡ b2

a2 ≡ p(X)

p(X)
(32)

Based on the findings as explained before and by figure 1 it is

tan α × cot α ≡+1 (33)

Some relationships before are demonstrated by a unit circle (see figure 2), i.e. a circle of unit radius
— that is, a radius of 1.
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c    = 1               a  =   ✓p(X)

b  =   ✓p(X)                                b 
⍺

a

Figure 2. Geometry, probability theory and unit circle.

An undeniable consequence of the previous explanations is that the “local hidden variable” (see
Bohm, 1952, De Broglie, Louis, 1927), denoted as E (X), is determined by the relationship

E (X)≡ X × cos2
α ≡ σ (X)2

E (X)
≡ σ (X)2

Ψ(X)×X ×Ψ* (X)
(34)

while the variance from the point of view of geometry is given as

σ (X)2 ≡ E
(

X2
)
−E (X)2

≡ (X × p(X))×X × (1− p(X))

≡
(

X × sin2
α

)
×X ×

(
1− sin2

α

)
≡
(

X × sin2
α

)
×X ×

(
cos2

α

)
≡ X2 ×

(
sin2

α

)
×
(

cos2
α

)
(35)
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From the point of view of tensor algebra, we obtain

p
(
Xklµν . . .

)
≡

Xklµν . . . × p
(
Xklµν . . .

)
Xklµν . . .

≡
E
(
Xklµν . . .

)
Xklµν . . .

≡
Xklµν . . . ×Xklµν . . . × p

(
Xklµν . . .

)
Xklµν . . . ×Xklµν . . .

≡
E
(2Xklµν . . .

)
2Xklµν . . .

≡
E
(
Xklµν . . .

)
×E

(
Xklµν . . .

)
E
(
Xklµν . . .

)
×Xklµν . . .

≡
2E
(
Xklµν . . .

)
E
(

2Xklµν . . .
)

≡ Ψ
(
Xklµν . . .

)
×Ψ

* (Xklµν . . .
)

(36)

where Ψ
(
Xklµν . . .

)
is the wave-function tensor of Xklµν . . . , Ψ* (Xklµν . . .

)
is the complex conjugate

wave-function tensor of Xklµν . . . .
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2.1.4. Variance of a Random Variable

Definition 2.4 (The Variance of a Random Variable). Johann Carl Friedrich Gauß (1777-1855) in-
troduced the normal distribution and the error of mean squared in his 1809 monograph(see Gauß,
Carl Friedrich, 1809). In the following, Karl Pearson (1857-1936) coined the term “standard de-
viation”in 1893. Pearson is writing: “Then σ will be termed its standard-deviation (error of mean
square).”(see Pearson, 1894, p. 80). Finally, the term variance was introduced by Sir Ronald Aylmer
Fisher (1890-1962) in the year 1918.

“The ... deviations of a ... measurement from its mean ... may be ... measured by the standard
deviation corresponding to the square root of the mean square error ... It is ... desirable in
analysing the causes ... to deal with the square of the standard deviation as the measure of

variability. We shall term this quantity the Variance... ”

(see Fisher, Ronald Aylmer, 1919, p. 399)

The deviation of a random variable X from its population mean or sample mean E(X) has a central
role in statistics and is one important measure of dispersion. The variance σ(X)2 (see Kolmogorov,
Andreı̆ Nikolaevich, 1950, p. 42 ), the second central moment of a distribution, is the expectation value
of the squared deviation of a random variable X from its own expectation value E(X) and is determined
in general as (see equation 5):

σ (X)2 ≡ E
(
X2)−E (X)2

≡ (X ×E (X))−E (X)2

≡ E (X)× (X −E (X))

≡ E (X)×E (X)

(37)

while E (X)≡ X −E (X). From the point of view of tensor algebra, it is

2
σ
(
Xklµν . . .

)
≡ E

(
2Xklµν . . .

)
− 2E

(
Xklµν . . .

)
≡
(
Xklµν . . . ×E

(
Xklµν . . .

))
− 2E

(
Xklµν . . .

)
≡ E

(
Xklµν . . .

)
×
(
Xklµν . . . −E

(
Xklµν . . .

))
≡ E

(
Xklµν . . .

)
×E

(
Xklµν . . .

) (38)

while E
(
Xklµν . . .

)
≡ Xklµν . . . − E

(
Xklµν . . .

)
. As demonstrated by equation 38, variance depends

not just on the expectation value of what has actually been observed E
((

Xklµν . . .
))

, but also on the
expectation value that could have been observed but were not

(
E
(
Xklµν . . .

))
). There are circumstances

in quantum mechanics where this fact is called the local hidden variable. Even if his might strike us
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as peculiar, variance 9 is primarily a mathematical method which is of use in order to evaluate specific
hypotheses in the light of some empirical facts. However, as a mathematical tool or method, variance
is also a scientific description of a certain part of objective reality too. In this context, as a general
mathematical principle, one fundamental meaning of variance is to provide a logically consistent link
between something and its own other, between X and anti X.

“The variance in this sense is a measure of the inner contradictions of a random variable, of
changes, of struggle within this random variable itself, or the greater σ (X)2 of a random variable,

the greater the inner contradictions of this random variable. ”

(see Barukčić, 2006a, p. 57)

All things considered, we can safely say that, on the whole, the variance is a mathematical descrip-
tion of the philosophical notion of the inner contradiction of a random variable X (see Hegel,
1812, 1813, 1816) . Based on equation 37, it is

E
(

X2
)
≡ E (X)2 +σ (X)2 (39)

or
E (X)2

E (X2)
+

σ (X)2

E (X2)
≡ p(X)+

σ (X)2

E (X2)
≡+1 (40)

In other words, the variance (see Barukčić, 2006b) of a random variable is a determining part of the
probability of a random variable. The wave function Ψ follows in general, as

Ψ(X)≡ 1
Ψ* (X)

− σ (X)2

(Ψ* (X)×E (X2))

≡
(
E
(
X2)−σ (X)2)

(Ψ* (X)×E (X2))

≡ 1
(Ψ* (X)×E (X2))

×
(

E
(

X2
)
−σ (X)2

)
≡ 1

(Ψ* (X)×E (X2))
×E (X)2

≡ 1
Ψ* (X)

× E (X)2

E (X2)

≡ 1
Ψ* (X)×X

×E (X)

(41)

The wave function (see Born, 1926) of a quantum-mechanical system is a central determining
part of the Schrödinger wave equation (see Schrödinger, Erwin Rudolf Josef Alexander, 1926, 1929,
1952).

9Romeijn, Jan-Willem, ”Philosophy of Statistics”, The Stanford Encyclopedia of Philosophy (Spring 2022 Edition), Edward N.
Zalta (ed.), forthcoming URL = https://plato.stanford.edu/archives/spr2022/entries/statistics/.
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Definition 2.5 (The First Moment Expectation of a Random Variable of X (anti X)). In general,
let E (X) be defined as

E (X)≡ X −E (X)≡ X − (X × p(X))≡ X × (+1− p(X)) (42)

and denote an expectation value of a (discrete) random variable anti X with the probability

p(X)≡ 1− p(X) (43)

The first moment expectation value (see Huygens and van Schooten, 1657, Kolmogorov, Andreı̆ Niko-
laevich, 1950, LaPlace, 1812, Whitworth, 1901) of anti X, denoted as E(X), is a number defined as
follows:

E (X)≡ X − (X × p(X))≡ X × (1− p(X))≡ X × p(X) (44)

The first moment expectation value squared of a random variable anti X follows as

E (X)2 ≡ p(X)×X × p(X)×X

≡ p(X)× p(X)×X ×X

≡ (p(X)×X)2

≡ E (X)×E (X)

(45)

Definition 2.6 (The Second Moment Expectation of a Random Variable of X (anti X)). The sec-
ond(see Kolmogorov, Andreı̆ Nikolaevich, 1950, p. 42 ) moment expectation value (or more or less
arithmetic mean) of a (large) number of independent realizations of a random variable anti X follows
as:

E
(
X2)≡ p(X)×X2

≡ (p(X)×X)×X

≡ E (X)×X

≡ X ×E (X)

(46)

Definition 2.7 (The n-th Moment Expectation of a Random Variable of X (anti X)). The n-th(see
Barukčić, 2020a, 2021) moment expectation value of a (large) number of independent realizations of
a random variable anti X follows as:

E (Xn)≡ p(X)×Xn

≡ (p(X)×X)×Xn-1

≡ E (X)×Xn-1

(47)

Definition 2.8 (The Co-Variance of a Random Variable). Sir Ronald Aylmer Fisher (1890 -1962)
introduced the term covariance (see Bailey, 1931) in the year 1930 in his book as follows:
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“It is obvious too that where a considerable fraction of the variance is contributed by chance
causes, the variance of any group of individuals will be inflated in comparison with the covariances

between related groups ... ”

(see Fisher, Ronald Aylmer, 1930, p. 195)

In general, the co-variance is defined as given by equation 48.

σ (X ,Y )≡ E (X ,Y )− (E (X)×E (Y )) (48)

From the point of view of tensor algebra, it is

σ
(
Xklµν . . . ,Y klµν . . .

)
≡ E

(
Xklµν . . . ,Y klµν . . .

)
−
(
E
(
Xklµν . . .

)
×E

(
Y klµν . . .

))
(49)

2.1.5. Geometry

2.1.5.1. Euclid’s theorem In general, Euclid’s (ca. 360-280 BC) so-called right triangle altitude
theorem or the geometric mean theorem or Euclid’s theorem, published as a corollary to proposition
8 in Book VI of Euclid’s Elements (see also Euclid, of Alexandria (300 BCE), 1893) and used in
proposition 14 of Book II to square a rectangle is defined (see Barukčić, 2013, 2015, 2016) as

R∆t
2 ≡ E (RX t)×E (RX t)

≡ (E (RX t)× RX t)× (E (RX t)× RX t)

RX t × RX t

≡ (Rat)
2 × (Rbt)

2

RX t2

≡ σ (X t)
2

(50)

where σ (X t)
2 is the variance of the random variable Xt. The variance R∆t

2 ≡ σ (X t)
2 of a right-angled

triangle is illustrated by Fig. 3 in more detail.
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RDt
2 = E(RXt)✕E(RXt)            E(RXt) 

RXt= E(RXt) + E(RXt)

RDt

RDt RDt

E(RXt)                   E(RXt)

Figure 3. Euclid’s theorem.
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2.1.5.2. Pythagorean theorem

Definition 2.9 (The right-angled triangle). A right-angled triangle is a triangle in which one angle
is a 90-degree angle. Let RXt denote the hypotenuse, the side opposite the right angle (side RXt inside
figure 4). The sides Rat and Rbt are called legs of the triangle. In a right-angled triangle ABC, the
side AC, which is abbreviated as Rbt, is the side which is adjacent to the angle α , while the side CB,
denoted as Rat, is the side opposite to the angle α . Figure 4 might illustrate a right-angled triangle
(see Bettinger and Englund, 1960). The relation between the sides and angles of a right-angled
triangle are known to be the basis for trigonometry, but are the basis of probability theory too.

© 2021, Ilija Barukčić, Jever, Germany. All rights reserved.

E(RXt)    B

RXt
E(RXt)                                                RDt Rat

a

A                                            Rbt C

Figure 4. Right-angled triangle. RXt is hypotenuse, Rat and Rbt are called triangles legs.

Again, RXt is in the state of superposition, a law which has been re-formulated by the Danish
geologist Nicolaus Steno (see Stenonis, Nicolai, 1669) in his 1696 book ‘De Solido Intra Naturaliter
Contento Dissertationis Prodomus ’. Thus far, how big is the chance or probability that three random
points like A, B, C in space-time are able to form a certain, stable right-angled triangle? Problems
of similar type have been studied in the 18th century under the notion of geometric probability (see
Milman, Vitali D., 2008, Solomon, 1978). Geometry and probability are deeply interrelated.

2.1.5.2.1. The Pythagorean theorem in general
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Definition 2.10 (The Pythagorean theorem).

“The Pythagorean Theorem is arguably the most famous statement in mathematics, and the
fourth most beautiful equation” (see Ratner, 2009). In general, the Pythagorean theorem is defined
as

Rat
2 + Rbt

2 ≡ RCt
2 ≡ RX t

2 (51)

Fig. 5 is illustrating the Pythagorean theorem in all its splendour and beauty in more detail in a grossly
simplified form.

© 2022, Ilija Barukčić, Jever, Germany. All rights reserved.

b                      b          a                       a

b                                                           a

C      C2 = C✕( X +X )       C

C

b2    =    C  ✕ X a2 =    C  ✕ X

△ = ✓(X ✕ X)

X X

Figure 5. Pythagorean theorem.

The famous Pythagorean theorem of Euclidean geometry is attributed to the Greek thinker Pythago-
ras of Samos (570–490 BCE). Pythagoras, the first mathematician, wrote 10 nothing. Pythagoras lived
long before the time of Plato (427–347 BCE) and Aristotle (384–322 BCE). However, even if attributed
to Pythagoras, the theorem has been known to the Babylonians (see Maor, 2007) more than a thou-
sand years before Pythagoras. Thus far, it remains controversial whether Pythagoras himself has been

10Huffman, Carl, ”Pythagoras”, The Stanford Encyclopedia of Philosophy (Winter 2018 Edition), Edward N. Zalta (ed.), URL =
<https://plato.stanford.edu/archives/win2018/entries/pythagoras/>.
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the first in history to introduce the so-called Pythagorean theorem. This gives rise to serious doubts
concerning the extent of the historical glorification of Pythagoras.

2.2. Axioms

2.2.1. Axiom I. Lex identitatis

In this context, we define axiom I as the expression

+1 =+1 (52)

2.2.2. Axiom II. Lex contradictionis

In this context, axiom II or lex contradictionis, the negative of lex identitatis, or

+0 =+1 (53)

and equally the most simple form of a contradiction formulated.

2.2.3. Axiom III. Lex negationis

¬(0)×0 = 1 (54)

where ¬ denotes (logical (Boole, 1854) or natural) negation (Ayer, 1952, Förster and Melamed, 2012,
Hedwig, 1980, Heinemann, Fritz H., 1943, Horn, 1989, Koch, 1999, Kunen, 1987, Newstadt, 2015,
Royce, 1917, Speranza and Horn, 2010, Wedin, 1990). In this context, there is some evidence that
¬(1)×1 = 0. In other words, it is (¬(1)×1)× (¬(0)×0) = 1

3. Results

3.1. Probability and the law of the excluded middle

Theorem 3.1 (Probability and the law of the excluded middle). Let t denote a single Bernoulli trial or
run of an experiment. In general, it is

p(RX t)≡ p(0X t)+ p(0X t) (55)

Proof by direct proof. The premise
+1 ≡+1 (56)
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is true. In the following, we rearrange this premise. We obtain

p(RX t)≡ p(RX t) (57)

At the same Bernoulli trial t p(RX t) can be determined by various, different probabilities. We obtain
the identity

p(RX t)≡ p(0X t)+ p(1X t)+ p(2X t)+ p(3X t)+ · · · (58)

Equation 58 does not exclude circumstances where p(RX t) ≡ +1. However, in order to bring back
Aristotle’s law of the excluded middle 11 , 12 into memory, there are conditions where “... there
cannot be an intermediate between contradictories ... ” (see also Aristotle, of Stageira (384-322
B.C.E), 1908, (Metaphysica, Chapter VII, 1011b, 23-24)). In other words, tertium non datur, a third
13 is not given. Equation 58 is rearranged as

p(RX t)− p(0X t)≡ p(1X t)+ p(2X t)+ p(3X t)+ · · · (59)

Therefore, we define in general

p(0X t)≡ p(RX t)− p(0X t)≡ p(1X t)+ p(2X t)+ p(3X t)+ · · · (60)

Equation 60 simplifies as
p(0X t)≡ p(RX t)− p(0X t) (61)

In general, the relationship between something and its own other, its own opposite, its own comple-
mentary at one and the same Bernoulli trial t, at one and the same run of an experiment et cetera, is
given by the equation

p(RX t)≡ p(0X t)+ p(0X t) (62)

□

3.2. Negative probabilities

Theorem 3.2 (Negative probabilities). It appears to be reasonable to assume the existence of negative
probabilities.

Proof by direct proof. In agreement with equation 62, it is

p(RX t)≡ p(0X t)+ p(0X t) (63)

Rearranging equation 63, it is

+0 ≡ p(0X t)+ p(0X t)− p(RX t) (64)
11Gottlieb, Paula, ”Aristotle on Non-contradiction”, The Stanford Encyclopedia of Philosophy (Spring 2019 Edition), Edward N.

Zalta (ed.), URL = https://plato.stanford.edu/archives/spr2019/entries/aristotle-noncontradiction/.
12Bown A. Epicurus on Bivalence and the Excluded Middle. Archiv für Geschichte der Philosophie. 2016;98(3): 239-271.

https://doi.org/10.1515/agph-2016-0012
13Horn, Laurence R., ”Contradiction”, The Stanford Encyclopedia of Philosophy (Winter 2018 Edition), Edward N. Zalta (ed.), URL

= https://plato.stanford.edu/archives/win2018/entries/contradiction/.
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RDt
2 = p(0Xt)✕p(0Xt)            p(0Xt) 

p(RXt)= p(0Xt)+p(0Xt)

RDt

RDt RDt

p(0Xt)                   p(0Xt)

Figure 6. Euclid’s theorem and probability theory.

and finally

−p(0X t)− p(0X t)≡−p(RX t) (65)

□

3.3. Determinatio est negatio

Anti 0 X t is usually opposed to 0 X t. However, the occurrence or measurement of 0 X t is already
determinate and is distinguished from another 0 X t. Yet, we cannot but express our disappointment
that the anti 0 X t which is opposed to the 0 X t is potentially also an anti 0 X t of a particular 0 X t, a
determinate anti 0 X t. Here, however, anti 0 X t is to be taken as it is in its simplicity. Furthermore, we
are dealing with 0 X t which in realizing itself in the form of an event at the same time resolves itself,

0 X t has for its result its own negation. In general, 0 X t passes over into the negation (see also Hegel,
1812, 1813, 1816) of its particular content and contains therefore to some extent that from which it
results.
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Theorem 3.3 (Determinatio est negatio). In general, the relationship between something and its own
other is determined by the natural process of negation, as

p(0X t)≡ p(RX t)×
(

1−
(

p(0X t)

p(RX t)

))
(66)

Proof by direct proof. The premise
+1 ≡+1 (67)

is true. In the following, we rearrange this premise. We obtain

p(RX t)≡ p(RX t) (68)

or
p(RX t)+0 ≡ p(RX t)− p(0X t)+ p(0X t) (69)

Again it is p(0X t)≡ p(RX t)− p(0X t) or according to Aristotle, “... there cannot be an intermediate
between contradictories ... ” (see also Aristotle, of Stageira (384-322 B.C.E), 1908, (Metaphysica,
Chapter VII, 1011b, 23-24)), tertium non datur, a third 14 is not given. Equation 68 becomes

p(RX t)≡ p(0X t)+ p(0X t) (70)

Equation 70 changes to
p(0X t)

p(RX t)
+

p(0X t)

p(RX t)
≡ p(RX t)

p(RX t)
≡+1 (71)

and to
p(0X t)

p(RX t)
≡ 1−

p(0X t)

p(RX t)
(72)

At the end of the proof, we arrived at Spinoza’s “... determinatio negatio est ... ” (see also Spinoza,
Benedictus de, 1674, p. 634). Equation 72 demands that

p(0X t)≡ p(RX t)×
(

1−
(

p(0X t)

p(RX t)

))
(73)

□

3.4. Expectation value I

Theorem 3.4 (Expectation value I). Let t denote a single Bernoulli trial or run of an experiment. In
general, it is

E (RX t)≡ E (0X t)+E (0X t) (74)

14Horn, Laurence R., ”Contradiction”, The Stanford Encyclopedia of Philosophy (Winter 2018 Edition), Edward N. Zalta (ed.), URL
= https://plato.stanford.edu/archives/win2018/entries/contradiction/.
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Proof by direct proof. The premise
+1 ≡+1 (75)

is true. In the following, we rearrange this premise. We obtain

E (RX t)≡ E (RX t) (76)

or
E (RX t)+0 ≡ E (RX t)−E (0X t)+E (0X t) (77)

We define E (0X t)≡ E (RX t)−E (0X t). In other words, “... there cannot be an intermediate between
contradictories ... ” (see also Aristotle, of Stageira (384-322 B.C.E), 1908, (Metaphysica, Chapter
VII, 1011b, 23-24)), tertium non datur, a third 15 is not given. Equation 76 becomes

E (RX t)≡ E (0X t)+E (0X t) (78)

□

Figure 7 might illustrate the result of theorem 3.4 in more detail.

Theorem 3.5 (Expectation value II).

Proof by direct proof. In general, it is

p(RX t)≡ p(0X t)+ p(0X t) (79)

After considering all of the circumstances which are known at this point in time, theoretically an
unknown parameter Y can be given, which permanently ensures that

E (RX t)≡ Y × p(RX t) (80)

Equation 79 changes only slightly and becomes

E (RX t)≡ (Y × p(RX t))≡ (Y × p(0X t))+(Y × p(0X t)) (81)

□

Theorem 3.6 (Expectation value III).

Proof by direct proof. In general, it is

E (RX t)≡ E (0X t)+E (0X t) (82)

15Horn, Laurence R., ”Contradiction”, The Stanford Encyclopedia of Philosophy (Winter 2018 Edition), Edward N. Zalta (ed.), URL
= https://plato.stanford.edu/archives/win2018/entries/contradiction/.
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E(0Xt) E(0Xt) E(RXt)

O u t c o m e 

Yes                 No

Variable

Figure 7. Euclid’s theorem and expectation values.

On this occasion, there is an unknown parameter Z, which permanently ensures that

E (0X t)≡ Z × p(0X t) (83)

and simultaneously also

E (0X t)≡ Z × p(0X t) (84)

Equation 82 changes slightly and becomes

(Z × p(0X t))+(Z × p(0X t))≡ E (RX t) (85)

and according to equation 81

(Z × p(0X t))+(Z × p(0X t))≡ (Y × p(RX t))≡ E (RX t) (86)

Rearranging equation 86according to equation 61, it is

(Z × (p(RX t)− p(0X t)))+(Z × p(0X t))≡ (Y × p(RX t)) (87)
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or

(Z × p(RX t))− (Z × p(0X t))+(Z × p(0X t))≡ (Y × p(RX t)) (88)

Equation 88 simplifies as

(Z × p(RX t))≡ (Y × p(RX t)) (89)

However, it is also possible and necessary to simplify equation 89 further. In general, it is necessary to
accept the mathematical identity

Z ≡ Y (90)

□

3.5. The unknown becomes known

Theorem 3.7 (The unknown becomes known).

Proof by direct proof. In agreement with equation 80 it is

E (RX t)≡ Y × p(RX t) (91)

In line with equation 1 it is (E (RX t)≡ p(RX t)× RX t). Equation 91 changes slightly and becomes,

Y × p(RX t)≡ p(RX t)× RX t (92)

In the final analysis, equation 92 will ultimately lead to the necessity to accept the mathematical identity

Y ≡ RX t (93)

□

3.6. Expection value IV

Theorem 3.8 (Expection value IV).

Proof by direct proof. In agreement with equation 83 it is

E (0X t)≡ Z × p(0X t) (94)

In line with equation 90 it is (Z ≡ Y ). Equation 94 changes slightly and becomes,

E (0X t)≡ Y × p(0X t) (95)
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In line with equation 93 it is (Y ≡ RX t). In the final analysis, equation 95 demand us to accept the
mathematical identity

E (0X t)≡ RX t × p(0X t) (96)

□

3.7. Expection value V

Theorem 3.9 (Expection value V).

Proof by direct proof. In agreement with equation 84 it is

E (0X t)≡ Z × p(0X t) (97)

In line with equation 90 it is (Z ≡ Y ). Equation 97 changes slightly and becomes,

E (0X t)≡ Y × p(0X t) (98)

In line with equation 93 it is (Y ≡ RX t). In the final analysis, equation 98 demand us to accept the
mathematical identity

E (0X t)≡ RX t × p(0X t) (99)

□
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RDt
2 = E(0Xt)✕E(0Xt)            E(0Xt) 

E(RXt)= E(0Xt)+E(0Xt)

RDt

RDt RDt

E(0Xt)                   E(0Xt)

Figure 8. Euclid’s theorem and expectation values.

Theorem 3.10 (Expection value VI).

Proof by direct proof. In agreement with equation 96 it is

E (0X t)≡ RX t × p(0X t) (100)

This result can be generalized. We set i = 0. Equation 100 changes slightly. It is

E (iX t)≡ RX t × p(iX t) (101)

Dividing equation 101 by (RX t), it is

E (iX t)

RX t
≡ p(iX t) (102)

Dividing equation 102 by p(RX t), it is

E (iX t)

RX t × p(RX t)
≡ p(iX t)

p(RX t)
(103)
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In agreement with equation 96, equation 103 becomes

E (iX t)

E (RX t)
≡ p(iX t)

p(RX t)
(104)

Equation 104 changes slightly and becomes

E (iX t)≡
p(iX t)

p(RX t)
×E (RX t) (105)

or in general

E (iX t)× p(RX t)≡ p(iX t)×E (RX t) (106)

□

3.8. Expectation value and variance

Theorem 3.11 (Expectation value and variance). In general, it is

σ (RX t)
2 ≡ E (RX t)×E (RX t) (107)

Proof by direct proof. Our premise (i.e. axiom) which is equally the theoretical starting point of this
theorem, is that

+1 ≡+1 (108)

is true. This premise is true. In the following, we rearrange this premise (i.e. axiom). We obtain

RX t ≡ RX t (109)

or

RX t ≡ RX t ×1 (110)

and

RX t +0 ≡ RX t × (1+0) (111)

or equally

RX t +0 ≡ RX t × (1− p(RX t)+ p(RX t)) (112)
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RX t +0 ≡ (RX t × (1− p(RX t)))+(RX t × p(RX t)) (113)

It is E (RX t)≡ RX t × (1− p(RX t)) and E (RX t)≡ RX t × p(RX t). Equation 113 becomes

RX t ≡ E (RX t)+E (RX t) (114)

Multiplying equation 114 by E (RX t) it is

RX t ×E (RX t)≡ (E (RX t)×E (RX t))+(E (RX t)×E (RX t)) (115)

It is RX t ×E (RX t)≡ RX t × RX t × p(RX t)≡ E
(

RX t
2). Equation 115 becomes

E
(

RX t
2
)
≡ E (RX t)

2 +E (RX t)×E (RX t) (116)

or

E
(

RX t
2
)
−E (RX t)

2 ≡ E (RX t)×E (RX t) (117)

It is σ (RX t)
2 ≡ E

(
RX t

2)−E (RX t)
2. Equation 117 becomes

σ (RX t)
2 ≡ E (RX t)×E (RX t) (118)

□

3.9. Superposition of probabilities I

Theorem 3.12 (Superposition of probabilities I). Let p(RX t) denote the probability of quantum me-
chanical observable, a random variable RXt et cetera as seen, measured et cetera from the point of
view of a stationary observer R. In general, it is

E (RX t)≡ (E (0X t))+(E (1X t))+(E (2X t))+(E (3X t))+ · · · (119)

Proof by direct proof. The premise
+1 ≡+1 (120)

is true. In the following, we rearrange the equation 120 (premise or axiom). We obtain

p(RX t)≡ p(RX t) (121)

Under circumstances where the probability p(RX t) is composed out of different individual probabilities
(“state of superposition”), it is

p(RX t)≡ p(0X t)+ p(1X t)+ p(2X t)+ p(3X t)+ · · · (122)
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From equation 122 follows, too, that

p(RX t)

p(RX t)
≡

p(0X t)+ p(1X t)+ p(2X t)+ p(3X t)+ · · ·
p(RX t)

≡+1

≡
p(0X t)

p(RX t)
+

p(1X t)

p(RX t)
+

p(2X t)

p(RX t)
+

p(3X t)

p(RX t)
+ · · · ≡+1

(123)

There are circumstances in which p(RX t) of equation 123 is equal to p(RX t) ≡ +1. Under these
circumstances, the relationships of equation 123 simplifies further to p(0X t) + p(1X t) + p(2X t) +
p(3X t)+ · · · ≡ +1. However, this requirement need not be given in general. Multiplying equation
122 by E (RX t) it is

E (RX t)≡ RX t × p(RX t)

≡
p(0X t)

p(RX t)
×E (RX t)+

p(1X t)

p(RX t)
×E (RX t)+

p(2X t)

p(RX t)
×E (RX t)+

p(3X t)

p(RX t)
×E (RX t)+ · · ·

(124)

In agreement with equation 105 it is

E (iX t)≡
p(iX t)

p(RX t)
×E (RX t) (125)

Example

E (0X t)≡
p(0X t)

p(RX t)
×E (RX t) (126)

Equation 124 becomes (see also DeGroot and Schervish, 2005, p. 219)

E (RX t)≡ (E (0X t))+(E (1X t))+(E (2X t))+(E (3X t))+ · · · (127)

□

3.10. Superposition of probabilities II

Theorem 3.13 (Superposition of probabilities II). In general, it is

E (RX t)≡ E (0X t)+E (1X t)+E (2X t)+ · · · (128)

Proof by direct proof. The premise
+1 ≡+1 (129)

is true. In the following, we rearrange the premise. We obtain

RX t ≡ RX t (130)
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while RXt might indicate a random variable as seen, regarded, measured et cetera from the point of
view of a stationary observer R (see also Einstein, 1905) at a Bernoulli trial t (see Uspensky,
1937). Under conditions where a random variable RXt is in the state of superposition, it is

RX t ≡ 0X t + 1X t + 2X t + · · · (131)

while 0Xt might denote the value of the random variable RXt as measured, seen, regarded et cetera
from the point of view of a co-moving observer 0 (see also Einstein, 1905) at a Bernoulli trial t (see
Uspensky, 1937). Rearranging equation 131, it is

RX t ≡ 0X t × p(RX t)

p(RX t)
+

1X t × p(RX t)

p(RX t)
+

2X t × p(RX t)

p(RX t)
+ · · · (132)

It is worth mentioning that equation 132 changes in agreement with equation 96 and equation 105 to

RX t ≡
E (0X t)

p(RX t)
+

E (1X t)

p(RX t)
+

E (2X t)

p(RX t)
+ · · · (133)

Simplifying equation 133, it is

RX t × p(RX t)≡ E (0X t)+E (1X t)+E (2X t)+ · · · (134)

In particular, in order to compute how a wave propagates and behaves like in quantum mechanics, the
application of the superposition principle is of advantage. Historically, there is some evidence that
the superposition principle has been a law which has been re-formulated by the Danish geologist
Nicolaus Steno (see Stenonis, Nicolai, 1669) in his 1696 book ‘De Solido Intra Naturaliter Contento
Dissertationis Prodomus ’. and later by Daniel Bernoulli (1700 – 1782) in 1753 (“Later (1753),
Daniel Bernoulli formulated the principle of superposition ...” (see Leon Brillouin, 1946, p. 2)).
In general, the expectation value of the random variable RXt is determined as (see also DeGroot and
Schervish, 2005, p. 219)

E (RX t)≡ E (0X t + 1X t + 2X t + · · ·)
≡ E (0X t)+E (1X t)+E (2X t)+ · · ·

(135)

□

In general and as found before (see equation 1), it is

E (RX t)≡ p(RX t)×RX t ≡ E (0X t)+E (1X t)+E (2X t)+ · · · (136)

Equation 136 changes to

RX t ≡
E (0X t)

p(RX t)
+

E (1X t)

p(RX t)
+

E (2X t)

p(RX t)
+ · · · (137)

In general, it is equally (see equation 125)

RX t ≡
(

RX t ×
p(0X t)

p(RX t)

)
+

(
RX t ×

p(1X t)

p(RX t)

)
+

(
RX t ×

p(2X t)

p(RX t)

)
+ · · · (138)
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3.11. Euclid’s theorem normalised

Theorem 3.14. Euclid’s theorem can be normalised. In general, it is

p(RX t)+ p(RX t) = +1 (139)

Proof. If the premise
+1 =+1 (140)

is true, then the conclusion
p(RX t)+ p(RX t) = +1 (141)

is also true, the absence of any technical errors and other errors of human reasoning presupposed. The
starting point of this proof (premise: +1 = +1) is true. Multiplying equation 140 by +RXt it is

+ RX t =+RX t (142)

Rearranging equation 142, we obtain

+ RX t −E(RX t)+E(RX t) = +RX t +0 (143)

while it is necessary that E(RXt) is for sure one determining part of +RXt, whatever E(RXt) and +RXt
may denote. In general, we consider without an exception all but E(RXt) at a certain period of or point
in time t as anti E(RXt). Anti E(RXt) is denoted by E(RXt). Arithmetically, we define E(RXt)as

E (RX t)≡+(RX t)−E (RX t) (144)

Equation 143 changes in perfect agreement with 144. In general and, in particular, it is

+E (RX t)+E (RX t) = RX t (145)

Equation 145 is illustrated in more detail by figure 9. By rearranging equation 145, we obtain the
general normalised form of Euclid’s theorem as

+

(
E(RX t)

RX t

)
+

(
E(RX t)

RX t

)
=

(
RX t

RX t

)
=+1 (146)

From the point of view of geometry, the probability of a single event, an entity, a quantity, a number et
cetera is the extent to which E(RXt), this single event, entity, quantity, number et cetera, is a determining
part of RXt. In general, it is

p(RX t)≡
E(RX t)

RX t
(147)

From the point of view of geometry, the probability of a single anti-event, an anti-entity, an anti-
quantity, an anti-number et cetera is the extent to which E(RXt), this single anti-event, an anti-entity,
an anti-quantity, an anti-number et cetera, is a determining part of RXt. In general, it is

p(RX t)≡
E(RX t)

RX t
= 1− (RX t)× p(RX t)

RX t
= 1− E(RX t)

RX t
= 1− p(RX t) (148)
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Taking into account the previous definitions (equation 147 and equation 148) then equation 146
changes to

p(RX t)+ p(RX t) = +1 (149)

□

© 2022, Ilija Barukčić, Jever, Germany. All rights reserved.

E(0Xt) E(0Xt) E(RXt)

E(RXt)

RXt

O u t c o m e 

Yes                 No

Variable

Figure 9. Expectation values at one single Bernoulli trial t.

3.12. Pythagorean theorem and probability theory

It should be remembered, moreover, that Euclid’s theorem is related to Thales of Miletus (ca.
624/623–ca.548/545 BCE) theorem. We may now apply Euclid’s theorem to the relative latecomer
in scientific history, the expectation values (see also fig. 3).

Theorem 3.15 (Pythagorean theorem and probability theory). In general, the Pythagorean theorem
as the foundation for geometry and probability theory is given in the language of probability theory
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and statistics by the equation

RX t
2 ≡ E

(
RX t

2)+E
(

RX t
2) (150)

as illustrated by fig. 10.

© 2021, Ilija Barukčić, Jever, Germany. All rights reserved.

RXt

RXt

E(RXt2)

b=E(RXt2) 1/2

b=E(RXt2)1/2

E(RXt)

E(RXt)

E(RXt2)

a=E(RXt2) 1/2

a=E(RXt2) 1/2

E(RXt2)

E(RXt2)

RDt

Figure 10. The Pythagorean theorem.

Proof by direct proof. Our premise (i.e. axiom) which is equally the theoretical starting point of this
theorem, is that

+1 ≡+1 (151)

is true. Well, obviously this premise is true. In the following, we rearrange this premise (i.e. axiom).
We obtain

+1+0 ≡ p(RX t)+1− p(RX t) (152)

Rearranging equation 152 , it is

+1 ≡ (RX t)× p(RX t)

(RX t)
+

(RX t)× (+1− p(RX t))

(RX t)
(153)
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In accordance with equation 8 and equation 9, it is

+1 ≡ E (RX t)

(RX t)
+

E
(

RX t
)

(RX t)
(154)

Equation 154 is multiplied by RX t
2. It is

RX t
2 ≡ (RX t)× (RX t)×E (RX t)

(RX t)
+

(RX t)× (RX t)×E
(

RX t
)

(RX t)
(155)

or

RX t
2 ≡ (RX t)×E (RX t)+(RX t)×E

(
RX t
)

(156)

Equation 156 changes (see equation 5, p. 8) and becomes

RX t
2 ≡ E

(
RX t

2
)
+(RX t)×E

(
RX t
)

(157)

Equation 157 changes. The Pythagorean theorem follows according to probability theory and statis-
tics as

RX t
2 ≡ E

(
RX t

2
)
+E

(
RX t

2
)

(158)

□

It must also be borne in mind to consider circumstances in which E
(

RX t
)

denotes something similar
like a ‘local hidden variable ’.

3.13. Pythagorean theorem and probability theory II

Theorem 3.16 (Pythagorean theorem and probability theory II).

Proof by direct proof. It is

+1 ≡+1 (159)

Equation 159 is equal (see equation 139, p. 36) with

+1 ≡ p(RX t)+ p(RX t) (160)

Multiplying equation 160 by RCt
2 it is

RCt
2 ≡

(
RCt

2 × p(RX t)
)
+
(

RCt
2 × p(RX t)

)
(161)
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In our opinion, it is

Rat
2 ≡ RCt

2 × p(RX t)≡ RCt × RX t ≡ E
(

RX t
2
)

(162)

Equation 161 changes accordingly. We obtain

RCt
2 ≡

(
Rat

2
)
+
(

RCt
2 × p(RX t)

)
(163)

In our view, it is

Rbt
2 ≡ RCt

2 × p(RX t)≡ RCt × RX t ≡ E
(

RX t
2
)

(164)

Equation 163 becomes

RCt
2 ≡

(
Rat

2
)
+
(

Rbt
2
)

(165)

□

3.14. Pythagorean theorem and probability theory III

Theorem 3.17 (Pythagorean theorem and probability theory III). In general, it is

RX t

RCt
≡ p(RX t) (166)

Proof by direct proof. The premise

+1 ≡+1 (167)

is true. Rearranging equation 167, it is (
Rat

2
)
≡
(

Rat
2
)

(168)

In general, it is (see equation 162, p. 40) Rat
2 ≡ RCt

2 × p(RX t)≡ RCt × RX t ≡ E
(

RX t
2) Equation 168

changes slightly and becomes (
Rat

2
)
≡ E

(
RX t

2
)

(169)

Dividing equation 169, we obtain (
Rat

2)
RCt2

≡
E
(

RX t
2)

RCt2
(170)

Simplifying equation 170, it is

RCt × RX t

RCt × RCt
≡ RCt

2 × p(RX t)

RCt × RCt
(171)

The reasoning before is formal and logically consistent from the beginning. In general, it is

RX t

RCt
≡ p(RX t) (172)

□
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3.15. The approximate probability of an event

Our sun has risen every day for a long time in the past. However, the question is justified, will
the same sun rise tomorrow too, for sure? In the light of such empirical facts, any inference from
the known or observed to the unknown or unobserved, has become known as “inductive inferences”.
The phrase per modum inductionis (see Wallisii, 1656) has been coined by John Wallis in 1656
in his book Arithmetica Infinitorum. Inductive inference is often overshadowed by the possibility of
being mistaken and is associated with a certain level of significance (see Arbuthnot, John, 1710, Venn,
1888), often denoted as the p-value (see Pearson, 1900). Historically, it was especially David Hume
16 who put into question in his 1739 Book ‘A Treatise of Human Nature, part iii, section 6’ (see Hume,
1739) any justification in which humans form knowledge which became known as Hume’s ‘problem
of induction ’.

Theorem 3.18 (THE APPROXIMATE PROBABILITY OF AN EVENT).

In general, it is
p(RX t)≡ exp −(p(R X t)) (173)

Proof. If the premise
+1 =+1 (174)

is true, then the conclusion
p(RX t)≡ exp −(p(R X t)) (175)

is also true, the absence of any technical errors and other errors of human reasoning presupposed. The
starting point of this proof (premise: +1 = +1) is true. Multiplying equation 174 by the probability
p(RXt) of an event RXt at the (period of) time / Bernoulli trial t, it is

p(RX t)≡ p(RX t) (176)

Equation 176 changes according to equation 149 into

p(RX t)≡ (+1− p(RX t)) (177)

Let us assume that the probability is constant from trial to trial, from experiment to experiment, it is
equally

p(RX t)≡
(
+1−

(
n× p(RX t)

n

))
(178)

While the number of observations increases, we obtain the following picture too.

p(RX t)
n ≡

(
+1−

(
n× p(RX t)

n

))
n (179)

16Henderson, Leah, ”The Problem of Induction”, The Stanford Encyclopedia of Philosophy (Spring 2020 Edition), Edward N. Zalta
(ed.), URL = https://plato.stanford.edu/archives/spr2020/entries/induction-problem/.
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Equation 179 can be simplified as

p(RX t)
n ≡

(
+1−

(
E (RX t)

n

))
n (180)

From elementary calculus (see also DeGroot and Schervish, 2005, p. 195) it is known that

lim
n→+∞

(
+1−

(
E (RX t)

n

))
n ≡ exp −E (R X t) (181)

According to equation 181, equation 180 is rearranged as

p(RX t)
n ≡ exp −E (R X t) (182)

The probability of a single event follows as

p(RX t)≡ n
√

p(RX t)n

≡ n
√

exp −E (R X t)

≡ exp
−E (R X t)

n

≡ exp
− (n× p(R X t))

n

(183)

Finally, there are circumstances where the probability of a single event (see Barukčić, 2019c, pp.
1843-1844) is given by the equation

p(RX t)≡ exp −(p(R X t)) (184)

□
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3.16. The quantum mechanical measurement problem

One of the many (philosophical) issues 17 raised by quantum theory is the measurement problem.
Nonetheless, even a measuring apparatus which is working properly is not the only possible factor
able to disturb ‘the true vale of RXt’. Other, and mostly even unknown events/factors (i.e. super-nova
explosion somewhere in deep space, gravitational waves) or other violent chain of events et cetera
might possess the possibility to determine the value of a random variable RXt too. How many factors
determine the value of a random variable RXtand to what extent at the Bernoulli trial t? Is it possible at
all to know anything with absolute certainty 18 (i.e. objectivism vs relativism), and who is the one who
knows anything with absolute certainty? Consideration should be given to a new, useful and logically
consistent approximation to the quantum mechanical measurement problem (see John von Neumann’s
projection postulate) 19 on all scales to the extent necessary.

Theorem 3.19 (The quantum mechanical measurement problem). In general, there are conditions,
where the quantum mechanical measurement problem is described completely by the equation

Ψ(RX t)≡ A(RX t)× exp −(p(R X t)) (185)

Proof by direct proof. Based on Born’s (see Born, 1926) rule (see equation 8, p. 10), we have to
consider the relationship

p(RX t)≡ Ψ(RX t)×Ψ
* (RX t) (186)

Equation 186 changes to (see equation 184, p. 42)

Ψ(RX t)×Ψ
* (RX t)≡ exp −(p(R X t)) (187)

The wave function of any random variable RX t is determined approximately as

Ψ(RX t)≡
1

Ψ* (RX t)
× exp −(p(R X t)) (188)

We define the amplitude as A(RX t)≡
1

Ψ* (RX t)
. Under these assumptions, the general form of a wave

function of any random variable RXt follows approximately as

Ψ(RX t)≡ A(RX t)× exp −(p(R X t)) (189)

while p(RX t) is the probability or the amount to which a local hidden parameter, the measuring appa-
ratus et cetera is a determining part of the wave function of any random variable RXt.

□

Stock market and other prices are very vulnerable. Many factors are influencing the same random
variable, too. Equation 189 should be able to cope even with these circumstances.

17Myrvold, Wayne, ”Philosophical Issues in Quantum Theory”, The Stanford Encyclopedia of Philosophy (Fall 2018 Edition),
Edward N. Zalta (ed.), URL = https://plato.stanford.edu/archives/fall2018/entries/qt-issues/.

18Kant, Immanuel. Critic der reinen Vernunft. Dritte Auflage. Riga: Johann Friedrich Hartknoch; 1790. p. 884.
19Faye, Jan, ”Copenhagen Interpretation of Quantum Mechanics”, The Stanford Encyclopedia of Philosophy (Winter 2019 Edition),

Edward N. Zalta (ed.), URL = https://plato.stanford.edu/archives/win2019/entries/qm-copenhagen/.
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3.17. The normalised Pythagorean theorem

In the following, we assume that RX t
2 ≡ RCt

2.

Theorem 3.20. The normalised Pythagorean theorem is determined as

Rat
2

RX t2
+ Rbt

2

RX t2
≡+1+2 (190)

Proof. If the premise
+1 ≡+1 (191)

is true, then the conclusion
Rat

2

RX t2
+ Rbt

2

RX t2
≡+1+2 (192)

is also true, the absence of any technical errors and other errors of human reasoning presupposed.
The starting point of this proof (premise: +1 = +1) is true. The Pythagorean theorem is proofed (see
equation 51) as Rat

2 + Rbt
2 ≡ RX t

2. Equation 191 changes to

RX t
2 ≡ RX t

2 (193)

and finally to

Rat
2 + Rbt

2 ≡ RX t
2 (194)

Dividing equation 194 by RXt
2 under conditions where this is possible and allowed, we obtain

Rat
2

RX t2
+ Rbt

2

RX t2
≡ RX t

2

RX t2
+1+2 (195)

□

Theorem 3.21. In the following, we assume that RX t
2 ≡ RCt

2. In general, Rat is the negation of Rbt and
vice versa. It is

Rat
2 = ¬(Rbt)× RX t

2 (196)

Proof. If the premise
+1 =+1 (197)

is true, then the conclusion

Rat =
2

√(
+1+2 − Rbt

2

RX t2

)
× RX t (198)
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is also true, the absence of any technical errors and other errors of human reasoning presupposed. The
starting point of this proof (premise: +1 = +1) is true. equation 197 is rearranged as

+1+2 =+1+2 (199)

The normalised form of the Pythagorean theorem is proofed as (see theorem 3.20, equation 195) as
Rat

2

RX t2
+ Rbt

2

RX t2
=+1+2. Equation 199 changes to

Rat
2

RX t2
+ Rbt

2

RX t2
=+1+2 (200)

Rearranging equation 200
Rat

2

RX t2
+=

(
+1+2 − Rbt

2

RX t2

)
(201)

Simplifying equation 201, it is

Rat
2 ×+1+2 =

(
+1+2 − Rbt

2

RX t2

)
× RX t

2 (202)

Equation 202 changes to

Rat
2 =

(
+1+2 − Rbt

2

RX t2

)
× RX t

2 (203)

and to

Rat =
2

√(
+1+2 − Rbt

2

RX t2

)
× RX t (204)

We define in general

¬(Rbt)≡
(
+1+2 − Rbt

2

RX t2

)
(205)

Equation 203 changes to

Rat
2 = ¬(Rbt)× RX t

2 (206)

□

The negation of Rbt need to be calculated similarly. We will obtain

¬(Rat)≡
(
+1+2 − Rat

2

RX t2

)
(207)

Under conditions of Einstein’s special relativity where Rat does denote the rest-mass and where RXt
does denote the relativistic mass, we obtain the identity with reciprocal Lorentz factor or Lorentz term

(see also Lorentz, 1899, p. 432) as

(
2

√(
+1+2 − Rbt

2

RX t2

))
≡

(
2

√(
1− v2

c2

))
(see also Barukčić,

2019a).
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3.18. The n-dimensional Pythagorean theorem

The metric tensor in general relativity theory generalizes the Pythagorean theorem more or less
to non-Euclidean geometries. However, the n-dimensional Pythagorean theorem can be derived in
another, simple and logically consistent way too. In the following, we assume that RX t

2 ≡ RCt
2.

Theorem 3.22. The n-dimensional Pythagorean theorem is determined as

Rat
2n + Rbt

2n ≡ RX t
2n (208)

Proof. If the premise
+1 =+1 (209)

is true, then the conclusion
Rat

2n +Rbt
2n ≡ RX t

2n (210)

is also true, the absence of any technical errors and other errors of human reasoning presupposed. The
starting point of this proof (premise: +1 = +1) is true. Equation 209 change quickly to

RX t
2 = RX t

2 (211)

Rearranging equation 211 by equation 190 derived as
(

Rat
2

RX t2
+ Rbt

2

RX t2
= RX t

2
)

yields

Rat
2

RX t2
+ Rbt

2

RX t2
= RX t

2 (212)

Several properties of the Pythagorean theorem are already identified. In general, it is proofed that

Rat
2 ≡ E(RX t)× RX t (213)

or that

Rat
2n ≡ E(RX t)

n × RX t
n ≡ (E(RX t)× RX t)

n (214)

Furthermore, it is

Rbt
2 ≡ E(RX t)× RX t (215)

and equally

Rbt
2n ≡ E(RX t)

n × RX t
n ≡ (E(RX t)× RX t)

n (216)

where n might denote the number of dimensions. Rearranging equation 212 according to the relation-
ship of equation 213 it is

E(RX t)× RX t

RX t2
+ Rbt

2

RX t2
=+12 (217)

Rearranging equation 217 according to the relationship of equation 215 it is

E(RX t)× RX t

RX t2
+

E(RX t)× RX t

RX t2
=+12 (218)
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Equation 218 simplifies further, as

E(RX t)

RX t
+

E(RX t)

RX t
=+12 (219)

Figure 11 illustrates these relationships in more detail.

© 2021, Ilija Barukčić, Jever, Germany. All rights reserved.

RXt

RXt

E(RXt2)

b=E(RXt2) 1/2

b=E(RXt2)1/2

E(RXt)

E(RXt)

E(RXt2)

a=E(RXt2) 1/2

a=E(RXt2) 1/2

E(RXt2)

E(RXt2)

RDt

Figure 11. Pythagorean theorem and expectation values.

Simplifying equation 219 it is

E(RX t)+E(RX t) = RX t
1 ×11 ×11 = (RX t ×1×1)1 = RX t

1 = RX t (220)

As known, it is
(
U1 ×U0 ≡U+1 ≡U

)
. However, equation 220 simplifies further. The most simple

and most general form of the Pythagorean theorem (see Barukčić, 2016) is based on the fundamental
relationship,

E(RX t)+E(RX t)≡ RX t (221)

In particular, the Pythagorean theorem can be extended to higher dimensions (see Yeng et al., 2008)
too. In the n-dimensional case (see Barukčić, 2020b), the relationship before becomes

(E(RX t)+E(RX t))
n ≡ RX t

n (222)
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Multiplying equation 222 by RX t
n, the Pythagorean theorem becomes something like

(E(RX t)+E(RX t))
n × RX t

n ≡ RX t
n × RX t

n (223)

or as
E(RX t)

n × RX t
n︸                ︷︷                ︸

R at2n

+ . . .︸︷︷︸
R bt2n

≡ RX t
n × RX t

n ≡ RX t
2n (224)

In general, the n-dimensional Pythagorean theorem is determined as

Rat
2n +Rbt

2n ≡ RX t
2n (225)

□
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3.19. Pythagorean theorem and the wave function Ψ

Especially in order to compute how a wave propagates and behaves like in quantum mechanics, the
application of the superposition principle is of advantage. There is some evidence that the superpo-
sition principle has been stated by Daniel Bernoulli (1700 – 1782) in 1753 (“Later (1753), Daniel
Bernoulli formulated the principle of superposition ...” (see Leon Brillouin, 1946, p. 2)).

Theorem 3.23. In general, it is(
Ψ(RX t)×Ψ(E(RX t))

Ψ(RX t)×Ψ(RX t)

)
+

(
Ψ(RX t)×Ψ(E(RX t))

Ψ(RX t)×Ψ(RX t)

)
≡+12 (226)

Proof. If the premise
+1 =+1 (227)

is true, then the conclusion(
Ψ(RX t)×Ψ(E(RX t))

Ψ(RX t)×Ψ(RX t)

)
+

(
Ψ(RX t)×Ψ(E(RX t))

Ψ(RX t)×Ψ(RX t)

)
≡+12 (228)

is also true, the absence of any technical errors and other errors of human reasoning presupposed. The
starting point of this proof (premise: +1 = +1) is true. Multiplying equation 227 by RXt, it is

RX t = RX t (229)

Based on theorem 3.22, equation 221, equation 229 changes to

E(RX t)+E(RX t)≡ RX t (230)

Theoretically it is necessary to consider the possibility that there are conditions where RXt is in a state
of superposition of E(RXt) and E(RXt). Thus far, under conditions where equation 230 can be described
by a (linear) function Ψ(RX t) which satisfies the superposition principle, it is equally

Ψ(E(RX t))+Ψ(E(RX t))≡ Ψ(E(RX t)+E(RX t))≡ Ψ(RX t) (231)

The principle of superposition and the Pythagorean theorem are the two sides of the same coin. It is

Ψ(E(RX t))+Ψ(E(RX t))≡ Ψ(RX t) (232)

Normalizing the relationship before, equation 232 changes slightly. It is

Ψ(E(RX t))

Ψ(RX t)
+

Ψ(E(RX t))

Ψ(RX t)
≡ Ψ(RX t)

Ψ(RX t)
≡+11 (233)

Multiplying equation 233 by
(

Ψ(RX t)

Ψ(RX t)

)
it is,(

Ψ(RX t)×Ψ(E(RX t))

Ψ(RX t)×Ψ(RX t)

)
+

(
Ψ(RX t)×Ψ(E(RX t))

Ψ(RX t)×Ψ(RX t)

)
≡+12 (234)

□
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3.20. The general contradiction law

Theorem 3.24 (THE GENERAL CONTRADICTION LAW). In general, it is

E (RX t)≤
(

RX t
2 ×π2 × h̄2

E (RX t)×h2

)
(235)

Proof. If the premise
+1 =+1 (236)

is true, then the conclusion

E (RX t)≤
(

RX t
2 ×π2 × h̄2

E (RX t)×h2

)
(237)

is also true, the absence of any technical errors and other errors of human reasoning presupposed. The
starting point of this proof (premise: +1 = +1) is true. Multiplying equation 236 by the variance of RXt
denoted as σ (RXt)2 (see also Kolmogorov, Andreı̆ Nikolaevich, 1950, p. 42), it is

σ(RX t)
2 ≡ σ(RX t)

2 (238)

The variance of RXt, denoted as σ (RXt)2 (see also Kolmogorov, Andreı̆ Nikolaevich, 1950, p. 42), is
defined or has been proved as

σ(RX t)
2 ≡ E (RX t)×E (RX t) (239)

In general, according to theorem 3.14, equation 147, it is

p(RX t)≡
E(RX t)

RX t
(240)

while theorem 3.14, equation 148 demands that

p(RX t)≡
E(RX t)

RX t
= 1− E(RX t)

RX t
= 1− p(RX t) (241)

Therefore, equation 239 changes to

σ(RX t)
2 ≡ σ (RX t)×σ (RX t)

≡ E (RX t −E (RX t))
2

≡
(

RX t
2
)
× (p(RX t)× (1− (p(RX t))))

≡ E (RX t)×E (RX t)

(242)

equation 242 simplifies as

σ(RX t)
2 ≡ E (RX t)×E (RX t)

≡
(

RX t
2
)
× (p(RX t)× (1− (p(RX t))))

(243)
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Under conditions, where the probability of a single event is not known, it is

(p(RX t)× (1− (p(RX t))))≤
1
4

(244)

equation 243 changes slightly to

E (RX t)×E (RX t)

RX t2
≤
(

1
2
× 1

2

)
(245)

From quantum theory, it is known that
1
2
≡ π × h̄

h
(246)

equation 245 changes to
E (RX t)×E (RX t)

RX t2
≤
(

π2 × h̄2

h2

)
(247)

The expectation value of anti RXt, denoted as E(RXt), follows approximately as

E (RX t)≤
(

RX t
2 ×π2 × h̄2

E (RX t)×h2

)
(248)

□

Equation 248 does not give any reason for the assumption that there is a kind of uncertainty between
RXt and RXt and do not constitute in no way a new uncertainty principle. Under conditions of 4
space-time dimensions of general relativity, it is

1
gµν ×gµν

≡ 1
4

(249)

Equation 245 changes under these conditions of general relativity to

E (RX t)×E (RX t)

RX t2
≤ 1

gµν ×gµν
(250)

or to
RX t

2 ≥ E (RX t)×gµν ×E (RX t)×gµν (251)

Furthermore, under conditions where

E (RX t)+E (RX t)≡ RX t (252)

we obtain, the identity (see also Barukčić, 2020a,b, 2021) of

R∆t
2 ≡ σ(RX t)

2 (253)

Especially, general relativity is related to the Pythagorean theorem. General relativity is a theory
of the geometrical properties of space-time to, while the metric tensor gµν itself is of fundamental
importance for general relativity. An important differentiation with respect to the metric tensor gµν is
necessary. The metric tensor gµν does not describe above all the gravitational field, but the gravitational
potential. Einstein himself worded this fact excellently.
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“... die ... Komponenten des Gravitationspotentials gµν ... ”

(see also Einstein, 1916, p. 818)

In English: ‘... the ... components of the gravitational potential gµν ...’. The metric tensor gµν is
something like the generalization of the Pythagorean theorem. Thus far, it does not appear to be
necessary to restrict the validity of the Pythagorean theorem only to certain situations. The question
is justified why the Riemannian geometry should be oppressed by the quadratic restriction. In this
context, Finsler geometry, named after Paul Finsler (1894 - 1970) who studied it in his doctoral thesis
(see Finsler, 1918) in 1918, appears to be a kind of metric generalization of Riemannian geometry
without the quadratic restriction and justifies the attempt to systematize and to extend the possibilities
of general relativity.
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3.21. Pythagorean theorem and probability of an event

Theorem 3.25 (PYTHAGOREAN THEOREM AND PROBABLITIY OF AN EVENT).

Under conditions of special theory of relativity (see also Einstein, 1905), the probability that REt
is determined by 0Et is given by

p(RE t)≡
(
+1−

(
v2

c2

))
(254)

by direct proof. According to equation 213 on page 46 it is

Rat
2 ≡ E(RX t)× RX t (255)

equation 255 is equivalent with

Rat
2 ≡ p(RX t)× RX t × RX t (256)

Dividing equation 256 by RXt
2 it is

Rat
2

(RX t × RX t)
≡ p(RX t)× (RX t × RX t)

(RX t × RX t)
≡ p(RX t) (257)

Let us consider conditions of the special theory of relativity where Rat
2 ≡ 0E t

2 ≡ RE t
2 ×(

+1−
(

v2

c2

))
. Furthermore, there are conditions where RX t ≡ RE t and it follows that equation 257

changes to

p(RE t)≡ Rat
2

(RX t × RX t)

≡ 0E t
2

(RE t2)
≡

RE t
2 ×
(
+1−

(
v2

c2

))
(RE t2)

≡
(
+1−

(
v2

c2

))
(258)

Under conditions of special theory of relativity, the probability that total energy (relativistic energy et
cetera) REt is determined by the rest-energy 0Et is given by

p(RE t = 0E t)≡
(
+1−

(
v2

c2

))
(259)

□

Remark 3.1. It need not be noisy to consider whether there exist any circumstances which might per-

mit us to conclude that p(RE t = 0E t) ≡
(
+1−

(
v2

c2

))
indicates the probability to which a quantum

mechanical entity can be regarded as being local.
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Rbt Rbt2 =p(RXt)✕p(0Xt)

Rat2 =
p(RXt)✕p(0Xt)

RatRbt

Rat

Rat

Rct=p(RXt)

Rct

Rct Rct2 =p(RXt)✕ p(RXt)

p(RXt)

p(0Xt)

p(0Xt)

Rat

Rbt

Rbt

Figure 12. Pythagorean theorem and right-angled triangle. Rct is hypotenuse, Rat and
Rbt are called triangles legs.

3.22. Slope (i.e. Gradient)

Theorem 3.26 (Slope (i.e. Gradient)). A straight line between any two points can be expressed by
probability theory too. Usually, a difference between the y-coordinates between two points (A,B) is
called the rise. At the same time, the difference between the x-coordinates of the same two points (A,B)
is called the run. The slope (i.e. gradient) can be calculated by dividing the rise (Rat) by run ((Rbt)).
In general, it is

Slope ≡ Rise
Run

≡ Rat

Rbt
(260)

Figure 13 explores the rise over run relationship (or slope formula) in more detail.

Proof by direct proof. It is

Slope ≡ Rise
Run

≡ Rat

Rbt
≡ 2

√
Rat

2

Rbt2
(261)
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Rct = p(RXt)= p(0Xt)+p(0Xt)

A        Rbt

a
p(0Xt)

Rct = p(RXt)
p(0Xt)

RDt

B

Rat

C

gradient( (Rat), (Rbt) ) 
=     Rise    /    Run 
= (   Rat.    ) / (   Rbt )
= ( p( 0Xt ) / p( 0 X t)  ) 1/2

Figure 13. Right-angled triangle. p(RXt) is hypotenuse, Rat and Rbt are called triangles
legs.

It is
Rat

2 ≡ E (RX t)×E (0X t) (262)

and
Rbt

2 ≡ E (RX t)×E (0X t) (263)

Equation 261 becomes

Slope ≡ Rise
Run

≡ Rat

Rbt
≡ 2

√
Rat

2

Rbt2
≡ 2

√
E (RX t)×E (0X t)

E (RX t)×E (0X t)
(264)

or

Slope ≡ 2

√
E (RX t)×E (0X t)

E (RX t)×E (0X t)
(265)

and simplifies finally as

Slope ≡ 2

√
E (0X t)

E (0X t)
(266)
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As found before, equation 266 changes slightly to

Slope ≡ 2

√
RX t × p(0X t)

RX t × p(0X t)
(267)

Under conditions of probability theory, the slope is given by the equation

Slope ≡ 2

√
p(0X t)

p(0X t)
(268)

□

The slope is either increasing, decreasing, horizontal or vertical. In general, it is necessary to
consider negative probabilities too. The mathematics of general relativity theory is very complex.
However, the slope is one of the foundations of the metric tensor of general relativity theory. Equation
268 enables as a final consequence a complete description of the curvature of space-time of general
relativity by the tools of probability theory, as indicated to some extent by figure 14.

© 2022, Ilija Barukčić, Jever, Germany. All rights reserved.

Figure 14. General relativity theory and probability theory.
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4. Discussion

Today, Kolmogorov’s (see also Kolmogorov, Andreı̆ Nikolaevich, 1950, p. 26) axiomatization of
probability theory works fine as a mathematical theory under many circumstances. Unfortunately, there
are some seemingly simple situations which cannot be described (see also Wenmackers, 2011, p. 131)
within Kolmogorov’s axiomatization of probability theory. It comes as no surprise that various efforts
on notions like geometric probability, especially by Gian Carlo Rota (see Holik et al., 2016, Klain
and Rota, 1997) or probabilistic geometry (see Menger, 2003) have been made and are published
or discussed in literature. Typical probabilistic topics are discussed in a geometric framework (see
Milman, Vitali D., 2008) too. The interaction between geometry and probability theory and as a conse-
quence between quantum mechanics and relativity theory is already on the theoretical map established
by several respectable authors. However, several attempts to find a unified mathematical framework
for geometry and probability theory have not been successful up to now. By looking at its conceptual,
methodological and philosophical dimensions a unification of geometry and probability into an unique
scientific theory is both a key major intellectual challenge and a huge opportunity at the same time too.
So it is now high time for scientist to take the next step.

5. Conclusion

The heart of this enterprise, and the insistence on the possibility and desirability of a unified theory
of geometry and probability cannot be understood without fully acknowledging the meaning of Euclid’s
theorem and the Pythagorean theorem. Based solely on these two theorems, geometry and probability
theory are unified.
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Erratum

Nil.

Private note

The definition section of a paper need not and does not necessarily contain new scientific aspects.
Above all, it also serves to better understand a scientific publication, to follow every step of the argu-
ments of an author and to explain in greater details the fundamentals on which a publication is based.
Therefore, there is no objective need to force authors to reinvent a scientific wheel once and again
unless such a need appears obviously factually necessary. The effort to write about a certain subject in
an original way in multiple publications does not exclude the necessity simply to cut and paste from
an earlier work, and has nothing to do with self-plagiarism. However, such an attitude cannot simply
be transferred to the sections’ introduction, results, discussion and conclusions et cetera.
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Ilija Barukčić. Aristotle’s law of contradiction and einstein’s special theory of relativity. Journal of Drug Delivery and Therapeutics, 9
(22):125–143, 3 2019a. ISSN 2250-1177. doi: 10.22270/jddt.v9i2.2389. JDDT.
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Ilija Barukčić. Locality and Non locality. European Journal of Applied Physics, 2(5):1–13, October 2020b. ISSN 2684-4451. doi:
10.24018/ejphysics.2020.2.5.22. URL https://ej-physics.org/index.php/ejphysics/article/view/22. Free full text:
EJAP.
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Pierre Simon de LaPlace. Théorie analytique des probabilités. Courcier, 1 1812. e-rara, Zurich, CH.

Leon Brillouin. Wave Propagation In Periodic Structures Electric Filters And Crystal Lattices First Edition. Mcgraw-hil Book Company,
Inc., New York (USA), 1946. URL http://archive.org/details/in.ernet.dli.2015.166889.

Hendrik Antoon Lorentz. Simplified theory of electrical and optical phenomena in moving systems. Verhandelingen der Koninklijke
Akademie van Wetenschappen, 1:427–442, 1899.

Eli Maor. The Pythagorean Theorem: A 4,000-Year History. Princeton University Press, 2007. ISBN 978-0-691-19688-6. URL
https://www.jstor.org/stable/j.ctvh9w0ks.

Karl Menger. Probabilistic geometry. Proceedings of the National Academy of Sciences of the United States of America, 37(4):226,
1951.

Karl Menger. Probabilistic Geometry. Editors: Menger, Karl and Schweizer, Bert and Sklar, Abe and Sigmund, Karl and Gruber, Peter
and Hlawka, Edmund and Reich, Ludwig and Schmetterer, Leopold, page 441–444. Springer, 2003. ISBN 978-3-7091-6045-9. doi:
10.1007/978-3-7091-6045-9 37. URL https://doi.org/10.1007/978-3-7091-6045-9_37.

Milman, Vitali D. Geometrization of Probability. Editors: Kapranov, Mikhail and Manin, Yuri Ivanovich and Moree, Pieter and
Kolyada, Sergiy and Potyagailo, Leonid, page 647–667. Progress in Mathematics. Birkhäuser, 2008. ISBN 978-3-7643-8608-5. doi:
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