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Abstract — Aim: The theoretical value of the cosmological constant Λ and the problem associated with the same is reviewed again.
Methods: The stress-energy-tensor was geometrized.
Results: Based on the geometrized stress-energy tensor, it was possible to calculate the exact value the cosmological constant.
Conclusion: The theoretical value of the cosmological constant Λ can be calculated very precisely.
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I. Introduction

Energy, time (Barukčić, 2011) and space are deeply interrelated. Especially gravity as the dominant interaction
at large length scales is an essential part of cosmology. Einstein (Einstein, 1916; Einstein & de Sitter, 1932;
Einstein, 1915, 1917) introduced a new way of representing gravity by replacing the single gravitational potential
and the associated field equation of Newton’s theory. One of the basic features of Einstein’s theory of general
relativity (GTR) and equally that what distinguishes GTR sharply from all other competing physical theories, is the
geometrization of a physical interactionwhich opened the theoretical possibility to understand the gravitational field
as something like the manifestation of space - time curvature.Einstein’s point of view was that the gravitational
field can be described by using particular mathematical tools like a metric tensor gµν . However, this need not
imply that gravity is and has to be reduced to geometry in its own right. In point of fact, Einstein’s stress-energy
momentum tensor of GTR is a weak spot of his theory because this field is thus far devoid (Goenner, 2004) of
any geometrical significance. Various proposals for a unified field theory “a generalization of the theory of the
gravitational field”(Einstein, 1950) were influenced by the desired replacement of the stress-energy momentum
tensor of matter by geometrical structures. In order to bring some order into the many different ways to include
the electromagnetic field into a geometric setting, general relativity (Barukčić, 2016a) can serve as a point of
departure for this undertaking. However, I do not see any reason to assume that ‘geometrization ” and ‘unification
’are incompatible. Still, both need not to be conceptually identical. A complete geometrization of Einstein’s
gravitational field equations could eventually end up at a unified field theory in the sense of Weyl and Eddington’s
classical field theory inwhich all fundamental interactions are described by objects of space-time geometry. Besides
of such fundamental problems, other and much more simple problems are not solved too. What is the value of
the cosmological constant Λ (Einstein & de Sitter, 1932; Einstein, 1917) ? Trying to answer these and similar
questions was the subject of many publications and is of this paper too.

II. Material and Methods

The Royal Society of London and the Royal Astronomical Society announced at their joint meeting on the sixth of
November 1919 that astronomical observations made by a special British team during the solar eclipse on May 29
provided the first empirical test of the validity of Einstein’s general theory of relativity. In order to obtain a kind
of a deeper knowledge of the foundations of nature and physics as such it seems therefore that the basic concepts
should be in accordance with Einstein’s general of relativity (Einstein, 1916) from the beginning. In point of fact,
attempts to extend general relativity’s geometrization of gravitational force to non-gravitational interactions, in
particular, to electromagnetism (Barukčić, 2016a), were not in vain.
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Definitions
Definition 3.1 (Anti tensor). Let aµν denote a co-variant (lower index) second-rank tensor. Let bµν denote
another co-variant second-rank et cetera. Let Eµν denote the sum of these co-variant second-rank tensors. Let the
relationship aµν + bµν + ... ≡ Eµν be given. A co-variant second-rank anti tensor (Barukčić, 2020) of a tensor
aµν denoted in general as aµν is defined

aµν ≡ Eµν − aµν
≡ bµν + ...

(1)

Let aµν denote a contra-variant (upper index) second-rank tensor. Let bµν denote another contra-variant
(upper index) second-rank et cetera. Let Eµν denote the sum of these contra-variant (upper index) second-rank
tensors. Let the relationship aµν + bµν + ... ≡ Eµν be given. A co-variant second-rank anti tensor of a tensor aµν
denoted in general as aµν is defined

aµν ≡ Eµν − aµν

≡ bµν + ...
(2)

Let aµν denote a mixed second-rank tensor. Let bµν denote another mixed second-rank et cetera. Let Eµν
denote the sum of these mixed second-rank tensors. Let the relationship aµν + bµν + ... ≡ Eµν be given. A mixed
second-rank anti tensor of a tensor aµν denoted in general as aµν is defined

aµ
ν ≡ Eµν − aµν

≡ bµν + ...
(3)

Symmetric tensors of rank 2may represent many physical properties objective reality. A co-variant second-rank
tensor aµν is symmetric if

aµν ≡ aνµ (4)
However, there are circumstances, where a tensor is anti-symmetric. A co-variant second-rank tensor aµν is
anti-symmetric if

aµν ≡ −aνµ (5)
Thus far, there are circumstances were an anti-tensor is identical with an anti-symmetrical tensor.

aµν ≡ Eµν − bµν + ... ≡ Eµν − aµν ≡ −aνµ (6)

Under conditions where Eµν = 0, an anti-tensor is identical with an anti-symmetrical tensor or it is

− aµν ≡ −aνµ (7)

However, an anti-tensor is not identical with an anti-symmetrical tensor as such.

Definition 3.2 (Einstein’s field equations). Let Rµν denote the Ricci tensor (Ricci & Levi-Civita, 1900) of
‘Einstein’s general theory of relativity’(Einstein, 1916), a geometric object developed by Gregorio Ricci-Curbastro
(1853 – 1925) able to measure of the degree to which a certain geometry of a given metric differs from that of
ordinary Euclidean space. Let R denote the Ricci scalar, the trace of the Ricci curvature tensor with respect to
the metric and equally the simplest curvature invariant of a Riemannian manifold. Ricci scalar curvature is the
contraction of the Ricci tensor and is written as R without subscripts or arguments. Let Λ denote the Einstein’s
cosmological constant. Let Λ denote the “anti cosmological constant”(Barukčić, 2015). Let gµν metric tensor
of Einstein’s general theory of relativity. Let Gµν denote Einstein’s curvature tensor. Let Gµν denote the “anti
tensor”(Barukčić, 2016c) of Einstein’s curvature tensor. Let Eµν denote stress-energy tensor of energy. Let Eµν
denote tensor of non-energy, the anti-tensor of the stress-energy tensor of energy. Let aµν , bµν , cµν and dµν denote
the four basic fields of nature were aµν is the stress-energy tensor of ordinary matter, bµν is the stress-energy tensor
of the electromagnetic field. Let c denote the speed of the light in vacuum, let γ denote Newton’s gravitational
“constant”(Barukčić, 2014, 2015, 2016b, 2016c). Let π denote the number pi. Einstein’s field equation, published
by Albert Einstein (Einstein, 1915) for the first time in 1915, and finally 1916 (Einstein, 1916) but later with the
“cosmological constant”(Einstein, 1935; Einstein & de Sitter, 1932; Einstein, 1917) term are determined as

Rµν −
((

R

2

)
× gµν

)
+ (Λ× gµν) ≡

(
4× 2× π × γ

c4

)
× Tµν ≡ Eµν (8)
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However, the above left-hand side of the Einstein field equations represents only one part (Ricci curvature) of
the geometric structure (Weyl curvature).

Definition 3.3 (Laue’s scalar T). Max von Laue (1879-1960) proposed the meanwhile so called Laue scalar
(Laue, 1911) (criticised by Einstein (Einstein & Grossmann, 1913) ) as the contraction of the the stress–energy
momentum tensor Tµν denoted as T and written without subscripts or arguments. Under conditions of Einstein’s
general (Einstein, 1916, 1935; Einstein & de Sitter, 1932; Einstein, 1915, 1917) theory of relativity, it is

T ≡ gµν × Tµν (9)

Taken Einstein seriously, Tµν “denotes the co-variant energy tensor of matter”(see Einstein, 1923, p. 88). In
other words, “Considered phenomenologically, this energy tensor is composed of that of the electromagnetic field
and of matter in the narrower sense.”(see Einstein, 1923, p. 93)

Definition 3.4 (The entity E). In general, we define the entity E as

E ≡
(

8× π × γ
c4 ×D

)
× T

≡
(

8× π × γ × T
c4 ×D

) (10)

where D is the space-time dimension, where c denote the speed of the light in vacuum, γ denote Newton’s
gravitational “constant”(Barukčić, 2014, 2015, 2016b, 2016c), π is the number pi and T denote Laue’s scalar.

Lemma 3.1 (The relationship between the entity E and the dimension of space-time D).

Einstein Field Equations in other space-time dimensions (see Málek, 2012, p. 31) than 3+1 need not lead to
insurmountable contradictions.
Claim.
In general, the entity E is given by

E ≡
(

4× 2× π × γ × T
c4 ×D

)
(11)

Proof By Modus Ponens.
If the premise

+1 = +1︸ ︷︷ ︸
(Premise)

(12)

is true, then the conclusion

E ≡
(

4× 2× π × γ × T
c4 ×D

)
(13)

is also true, the absence of any technical errors presupposed. The premise

(+1) = (+1) (14)

is true. Multiplying this premise by the stress-energy momentum tensor it is(
4× 2× π × γ

c4

)
× Tµν ≡

(
4× 2× π × γ

c4

)
× Tµν (15)

We do expect that the stress-energy momentum tensor can be geometrized completely as(
4× 2× π × γ

c4

)
× Tµν ≡ E × gµν (16)

Rearranging it is, (
4× 2× π × γ

c4

)
× Tµν × gµν ≡ E × gµν × gµν (17)

According to definition of Laue’s scalar (definition 3.3) it is(
4× 2× π × γ

c4

)
× T ≡ E × gµν × gµν (18)
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According to definition 3.14 (definition 3.14, equation 43) it is(
4× 2× π × γ × T

c4

)
≡ E ×D (19)

The entity E is depending on the number of space-time dimensions D and follows as

E ≡
(

4× 2× π × γ × T
c4 ×D

)
(20)

In other words, our conclusion is true.
Quod erat demonstrandum.

Definition 3.5 (The tensor of energy andmomentumaµν + bµν). The tensor of stress-energy-momentum denoted
as Eµν is determined in detail as follows.

Eµν ≡
(

4× 2× π × γ
c4

)
× Tµν

≡ Rµν −
((

R

2

)
× gµν

)
+ (Λ× gµν)

≡ Gµν + (Λ× gµν)

≡ Rµν − Eµν
≡ aµν + bµν

≡ E × gµν

(21)

In our understanding, the stress-energy tensor of the electromagnetic field (bµν) is equivalent to the portion of
the stress-energy tensor of matter / energy (Eµν)due to the electromagnetic field where where Tµν “denotes the
co-variant energy tensor of matter”(see Einstein, 1923, p. 88). In other words, there is no third tensor between the
stress-energy tensor of the electromagnetic field (bµν) and the tensor of ordinary matter or matter in the narrower
sense (aµν), a third tensor is not given, tertium non datur! In other words, as outlined view lines before:
“Considered phenomenologically, this energy tensor is composed of that of the electromagnetic field and of matter
in the narrower sense. ”(see Einstein, 1923, p. 93)

Electromagnetic field bµν

Ordinary matter aµν

Figure. Energy tensor as identity of ordinary matter and electromagnetic field.

Vranceanu (see Vranceanu, 1936) is elaborating on the same issue too. In point of fact, the energy tensor Tkl
is treated by Vranceanu as the sum of two tensors one of which is due to the electromagnetic field (bµν).

“On peut aussi supposer que le tenseur d’énergie Tkl soit la somme de deux tenseurs dont un dû au champ
électromagnétique . . . ”(see Vranceanu, 1936)

Translated into English: ‘One can also assume that the energy tensor Tkl be the sum of two tensors one of which
is due to the electromagnetic field.’In this context, it is necessary to make a distinction between the relationship
between ordinary matter and electromagnetic field and matter and gravitational field. Matter and ordinary matter
are not completely the same.

Definition 3.6 (The tensor of non-energy). Under conditions of Einstein’s general (Einstein, 1916, 1935; Einstein
& de Sitter, 1932; Einstein, 1915, 1917) theory of relativity, the tensor of non-energy or the anti tensor of the stress
energy tensor is defined/derived/determined as follows:

ISSN: 1863-9542 http://www.causation.eu Page 8

http://www.causation.eu


©Ilija Barukčić, Jever, Germany, August 2020 (Causation – Volume 15 - Issue 8)

Eµν ≡ Rµν −
(

4× 2× π × γ
c4

)
× Tµν ≡

((
R

2

)
× gµν

)
− (Λ× gµν) ≡

((
R

2
− Λ

)
× gµν

)
≡ cµν + dµν

(22)

Definition 3.7 (The anti Einstein’s curvature tensor or the tensor or non-curvature ). Under conditions of
Einstein’s general (Einstein, 1916, 1935; Einstein & de Sitter, 1932; Einstein, 1915, 1917) theory of relativity, the
tensor of non-curvature is defined/derived/determined as follows:

Gµν ≡ Rµν −Gµν ≡ Rµν −
(
Rµν −

((
R

2

)
× gµν

))
≡
(
R

2

)
× gµν ≡ bµν + dµν (23)

Definition 3.8 (The tensor dµν (neither curvature nor momentum)). Under conditions of Einstein’s general
(Einstein, 1916, 1935; Einstein & de Sitter, 1932; Einstein, 1915, 1917) theory of relativity, the tensor of neither
curvature nor momentum is defined/derived/determined as follows:

dµν ≡
((

R

2

)
× gµν

)
− bµν ≡

((
R

2

)
× gµν

)
− (Λ× gµν)− cµν (24)

There may exist circumstances where this tensor indicates pure vacuum, the space devoid of any matter.

Definition 3.9 (The tensor cµν). Under conditions of Einstein’s general (Einstein, 1916, 1935; Einstein &
de Sitter, 1932; Einstein, 1915, 1917) theory of relativity, the tensor of non-momentum and curvature is defi-
ned/derived/determined as follows:

cµν ≡ bµν − (Λ× gµν) (25)

Definition 3.10 (The tensor bµν). The co-variant stress-energy tensor of the electromagnetic field, in this context
denoted by bµν , is of order two and its components can be displayed by a 4 × 4 matrix too. Under conditions of
Einstein’s general (Einstein, 1916, 1935; Einstein & de Sitter, 1932; Einstein, 1915, 1917) theory of relativity, the
tensor bµν denotes the stress-energy tensor of the electromagnetic field (Hughston & Tod, 1990, p. 38) expressed
more compactly and in a coordinate-independent is

bµν ≡
(

1

4× π
×
((
Fµ c × F ν d × gcd

)
−
(

1

4
× gµν × F de × F de

)))
(26)

where Fde is called the (traceless) Faraday/electromagnetic/field strength tensor.

Definition 3.11 (The stress-energy tensor of ordinary matter aµν). Under conditions of Einstein’s general
(Einstein, 1916, 1935; Einstein & de Sitter, 1932; Einstein, 1915, 1917) theory of relativity, the stress-energy
tensor of ordinary matter aµν is defined/derived/determined as follows:

aµν ≡
((

4× 2× π × γ
c4

)
× Tµν

)
− bµν ≡ Gµν + (Λ× gµν)− bµν ≡ Rµν − (R× gµν) + (Λ× gµν) + dµν

(27)
or

aµν ≡ Rµν −
((

R

2

)
× gµν

)
+ (Λ× gµν)−

(
1

4× π
×
((
Fµ c × F ν d × gcd

)
−
(

1

4
× gµν × F de × F de

)))
(28)

Definition 3.12 (The Ricci tensor Rµν ). Let Rµν denote the Ricci tensor (Ricci & Levi-Civita, 1900) of ‘Einstein’s
general theory of relativity’(Einstein, 1916), a geometric object developed by Gregorio Ricci-Curbastro (1853 –
1925) able to measure of the degree to which a certain geometry of a given metric differs from that of ordinary
Euclidean space. Let aµν , bµν , cµν and dµν denote the four basic fields of nature were aµν is the stress-energy
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tensor of ordinary matter, bµν is the stress-energy tensor of the electromagnetic field.

Rµν ≡
((

4× 2× π × γ
c4

)
× Tµν

)
︸ ︷︷ ︸

aµν+bµν

+

(((
R

2

)
× gµν

)
− (Λ× gµν)

)
︸ ︷︷ ︸

cµν+dµν

≡ (aµν + bµν) + (cµν + dµν)

≡ (aµν + cµν) + (bµν + dµν)

≡ (aµν) + (+bµν + cµν + dµν)

≡ (bµν) + (+aµν + cµν + dµν)

≡ (cµν) + (+aµν + bµν + dµν)

≡ (dµν) + (+aµν + bµν + cµν)

≡ aµν + bµν + cµν + dµν

≡ S × gµν

≡
(
R

D

)
× gµν

(29)

Lemma 3.2 (The relationship between the entity S and the dimension of space-time D).

Einstein Field Equations are defined in space-time dimensions (see Málek, 2012, p. 31) other than 3+1 too.
Claim.
In general, the entity S is given by

S ≡
(
R

D

)
(30)

Proof By Modus Ponens.
If the premise

+1 = +1︸ ︷︷ ︸
(Premise)

(31)

is true, then the conclusion

S ≡
(
R

D

)
(32)

is also true, the absence of any technical errors presupposed. The premise

(+1) = (+1) (33)

is true. Multiplying this premise by the stress-energy momentum tensor it is

Rµν ≡ Rµν (34)

We do expect that the Ricci tensor is completely determined by the entitity S and the metric tensor gµν as

Rµν ≡ S × gµν (35)

Rearranging it is,
Rµν × gµν ≡ S × gµν × gµν (36)

or in accordance to definition 3.13
R ≡ S × gµν × gµν (37)

According to definition 3.14 (definition 3.14, equation 43) it is

R ≡ S ×D (38)

The entity S is depending on the number of space-time dimensions D and follows as

S ≡
(
R

D

)
(39)

In other words, our conclusion is true.
Quod erat demonstrandum.
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Remark 3.1. The complete geometrization of Einstein field equations as provided by Ilija Barukčić (see Barukčić,
2020) has been derived under conditions where the number of space-time dimensions D is equal to D = 4.

Definition 3.13 (The Ricci scalar R). Under conditions of Einstein’s general (Einstein, 1916, 1935; Einstein
& de Sitter, 1932; Einstein, 1915, 1917) theory of relativity, the Ricci scalar curvature R as the trace of the
Ricci curvature tensor Rµν with respect to the metric is determined at each point in space-time by lamda Λ and
anti-lamda (Barukčić, 2015) Λ as

R ≡ gµν ×Rµν ≡ (Λ) + (Λ) ≡ D × S (40)

where D is the number of space-time dimension and S ≡
(
R

D

)
(lemma 3.2, equation 39). A Ricci scalar curvature

R which is positive at a certain point indicates that the volume of a small ball about the point has smaller volume
than a ball of the same radius in Euclidean space. In contrast to this, a Ricci scalar curvature R which is negative
at a certain point indicates that the volume of a small ball is larger than it would be in Euclidean space. In general
it is

R× gµν ≡ (Λ× gµν) + (Λ× gµν) (41)

The cosmological constant can also be written algebraically as part of the stress–energy tensor, a second order
tensor as the source of gravity (energy density).

Table 1 provides an overview of the definitions of the four basic (Barukčić, 2016a, 2016c) fields of nature.

Curvature
YES NO

Momentum YES aµν bµν Eµν
NO cµν dµν Eµν

Gµν Gµν Rµν

Tabelle 1: Einstein field equations and the four basic fields of nature

Definition 3.14 (The inverse metric tensor gµν and the metric tensor gµν). Einstein field equations relate
(local) space-time curvature with (local) energy and momentum as

Rµν −
((

R

2

)
× gµν

)
+ (Λ× gµν)︸ ︷︷ ︸

(local) space−time curvature

≡
(

4× 2× π × γ
c4

)
× Tµν︸ ︷︷ ︸

(local) energy and momentum

(42)

The expression on the left side of Einstein field equations represents the curvature of space-time as determined by
the metric while the expression on the right side of Einstein field equations represents the matter–energy content of
space-time. Mathematically, it is possible to take the trace with respect to the metric of both sides of the Einstein
field equations and it is necessary to consider circumstances that

gµν × gµν ≡ D (43)

where D is the number of space-time dimensions. But nonetheless, Einstein field equations (Einstein, 1916,
1935; Einstein & de Sitter, 1932; Einstein, 1915, 1917) were initially formulated by Einstein himself in the context
of a four-dimensional theory even though Einstein field equations need not to break down under conditions of D
space-time dimensions (see Stephani, 2003). Therefore, based on Einstein’s statement (Einstein, 1916, p. 796),
one gets

gµν × gµν ≡ D ≡ +4 (44)

or
1

gµν × gµν
≡ 1

4
(45)

where gµν is the matrix inverse of the metric tensor gµν . The inverse metric tensor or the metric tensor, which
is always symmetric, allow tensors to be transformed into each other.

Einstein’s point of view is that “... in the general theory of relativity ... must be ... the tensor gµν of the
gravitational potential”(Einstein, 1923, p. 88) Treat the metric tensor gµν as a square matrix. The inverse metric
tensor gµν is of the same size. Thus far, whatever gµν does, gµν undoes and their product is the identity.
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Definition 3.15 (Index raising). For an order-2 tensor, twice multiplying by the contra-variant metric tensor and
contracting in different indices (Kay, 1988) raises each index. In simple words, it is

F ( 1 3
µ c ) ≡ g( 1 2

µ ν ) × g( 3 4
c d ) × F( ν d

2 4 ) (46)

or more professionally

Fµ c ≡ gµν × gcd × F ν d (47)
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3.1 Axioms

3.2 Axioms in general
Axioms (Hilbert, 1917) and rules which are chosen carefully can be of use to avoid logical inconsistency and
equally preventing science from supporting particular ideologies. Rightly or wrongly, long lasting advances in our
knowledge of nature are enabled by suitable axioms (Easwaran, 2008) too. Einstein himself brings it again to the
point. (see Einstein, 1919, p. 17)

“Die wahrhaft großen Fortschritte der Naturerkenntnis sind
auf einem der Induktion fast diametral entgegengesetzten Wege

entstanden.”(see Einstein, 1919, p. 17)

Einstein’s previous position now been translated into English: The truly great advances in our understanding
of nature originated in a manner almost diametrically opposed to induction. It is worth mentioning in this matter,
Einstein himself advocated especially basic laws (axioms) and conclusions derived from the same as a main logical
foundation of any ‘theory’.

“Grundgesetz (Axiome)
und

Folgerungen
zusammen bilden das was man

eine ‘Theorie’
nennt. ”(see Einstein, 1919, p. 17)

Albert Einstein’s (1879-1955) message translated into English as: Basic law (axioms) and conclusions together
form what is called a ‘theory’ has still to get round. However, it is currently difficult to ignore completely
these historical and far reaching words of wisdom. The same taken more seriously and put into practice, will
yield an approach to fundamental scientific problems which is more creative and sustainably logically consistent.
Historically, Aristotle himself already cited the law of excluded middle and the law of contradiction as examples
of axioms. However, lex identitatis is an axiom too, which possess the potential to serve as the most basic
and equally as the most simple axiom of science. Something which is really just itself is equally different from
everything else. In point of fact, is such an equivalence which everything has to itself inherent or must the same be
constructed by human mind and consciousness. Following Gottfried Wilhelm Leibniz (1646-1716):

“Chaque chose est ce qu’elle est.
Et dans autant d’exemples qu’on voudra

A est A, B est B. ”(see Leibniz, 1765, p. 327)

or A = A, B = B or +1 = +1. In this context, lex contradictionis, the negative of lex identitatis, or +0 = +1 is
of no minor importance too.

3.2.1 Axiom I. Lex identitatis

To say that +1 is identical to +1 is to say that both are the same.
Axiom 1. Lex identitatis.

+ 1 ≡ +1 (48)

However, even such a numerical identity which seems in itself wholly unproblematic, for it indicates just to a
relation which something has to itself and nothing else, is still subject to controversy. Another increasingly popular
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view is that the same numerical identity implies the controversial view that we are talking about two different
numbers +1. The one +1 is on the left side on the equation, the other +1 is on the right side of an equation. The
basicness of the relation of identity implies the contradiction too while circularity is avoided. In other words, how
can the same +1 be identical with itself and be equally different from itself? We may usefully state that identity is
an utterly problematic notion and might be the most troublesome of all.

3.2.2 Axiom II. Lex contradictionis

Axiom 2. Lex contradictionis.

+ 0 ≡ +1 (49)

A considerable obstacle to understanding contemporary usage of the term contradiction, however, is that contra-
diction does not seem to be a unitary one. How can something be both, itself (a path is a straight line from the
standpoint of a co-moving observer at a certain point in space-time) and the other of itself, its own opposition
(the same path is not a straight line, the same path is curved, from the standpoint of a stationary observer at a
certain point in space-time) (Barukčić, 2019). We may simply deny the existence of objective or of any other
contradictions. Furthermore, even if it remains especially according to Einstein’s special theory of relativity that
it is not guaranteed that the notion of an absolute contradiction is justified, Einstein’s special theory of relativity
insist that contradictions are objective and real. That this is so highlights the fact that from the standpoint of a
co-moving observer, under certain circumstances, a path is a straight line and nothing else. However, under the
same circumstances of special theory of relativity where the relative velocity v > 0, from the standpoint of a
stationary observer the same path is a not a straight line, the path is curved. The justified question is, why
should and how can an identical be a contradictory too?

3.2.3 Axiom III. Lex negationis

Axiom 3. Lex negationis.

¬ (0)× (+0) ≡ (+1) (50)

where ¬ denotes the (natural/logical) process of negation.
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III. Results

Theorem 3.1 (The geometrical form of the stress-energy tensor of the electromagnetic field
bµν).

Within the frame of Einstein’s theory of general (Einstein, 1916) relativity the geometrization of the electroma-
gnetic fields has been left behind as an unsolved problem. Many different trials proposed its own way to extend the
geometry of general relativity that would, so it seemed, serve as a geometrization of the electromagnetic field as
well. However, the conceptual differences between the geometrized gravitational field and the classical Maxwellian
theory of the electromagnetic filed were so far insurmountable.
Claim.
In general, the completely geometrical form of the stress-energy momentum tensor of the electromagnetic field
bµν is given by

bµν ≡
1

4× 4× π
×
(
(Fµ c × Fµ c)−

(
F de × F de))× gµν (51)

Proof By Modus Ponens.
If the premise

+1 = +1︸ ︷︷ ︸
(Premise)

(52)

is true, then the conclusion

bµν ≡
1

4× 4× π
×
(
(Fµ c × Fµ c)−

(
F de × F de))× gµν (53)

is also true, the absence of any technical errors presupposed. The premise

(+1) = (+1) (54)

is true. Multiplying this premise by the stress-energy momentum tensor of the electromagnetic field bµν , we obtain

(+1)× bµν ≡ (+1)× bµν (55)

or
bµν ≡ bµν (56)

Rearranging equation according to the definition 3.10 it is

bµν ≡
(

1

4× π
×
((
Fµ c × F ν d × gcd

)
−
(

1

4
× gµν × F de × F de

)))
(57)

Rearranging equation before again it is

bµν ≡
1

4× π
×
((

4×D
4×D

×
(
Fµ c × F ν d × gcd

))
−
((

D

4×D
× F de × F de

)
× gµν

))
(58)

where D denotes the number of space-time dimensions. Rearranging the equation before, we obtain

bµν ≡
1

4× π × 4×D
×
((

4×D ×
(
Fµ c × F ν d × gcd

))
−
(
D ×

(
F de × F de)× gµν)) (59)

Under conditions where gµν × gµν ≡ D (definition 3.14) equation before simplifies as

bµν ≡
1

4× π × 4×D
×
((

4× (gµν × gµν)×
(
Fµ c × F ν d × gcd

))
−
(
D ×

(
F de × F de)× gµν)) (60)

or as

bµν ≡
1

4× π × 4×D
×
(((

4× (gµν)×
(
Fµ c × F ν d × gcd

))
× gµν

)
−
(
D ×

(
F de × F de)× gµν)) (61)

A further simplification of the relationship before yields the stress-energy momentum tensor of the electroma-
gnetic field bµν determined by the metric tensor of general relativity gµν as
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bµν ≡
1

4× π × 4×D
×
((

4×
(
Fµ c × gµν × gcd × F ν d

))
−
(
D ×

(
F de × F de)))× gµν (62)

However, the term
((
Fµ c × gµν × gcd × F ν d

)
−
(
F de × F de)) of the equation before can be simplified

further. For an order-2 tensor, twice multiplying by the contra-variant metric tensor and contracting in different
indices (see Kay, 1988) raises each index. In other words, according to the definition 3.15 it is in general
F ( 1 3

µ c ) ≡ g( 1 2
µ ν ) × g( 3 4

c d ) × F( ν d
2 4 ) or more professionally Fµ c ≡ gµν × gcd × F ν d which simplifies the

term above as

bµν ≡
1

4× π × 4×D
×
(
(4× (Fµ c × Fµ c))−

(
D ×

(
F de × F de)))× gµν (63)

This relationship simplifies further as

bµν ≡
1

4× π
×

((
4× (Fµ c × Fµ c)

4×D

)
−

(
D ×

(
F de × F de)
4×D

))
× gµν (64)

Under conditions of D space-time dimensions, the geometrical form of the stress-energy momentum tensor of
the electromagnetic field bµν follows as

bµν ≡
1

4× π
×

((
(Fµ c × Fµ c)

D

)
−

((
F de × F de)

4

))
× gµν (65)

According to lemma 3.2 it is S ≡
(
R

D

)
or
(

1

D

)
≡
(
S

R

)
. Equation before simplifies further as

bµν ≡
1

4× π
×

((
4× S × (Fµ c × Fµ c)

4×R

)
−

(
R×

(
F de × F de)
4×R

))
× gµν (66)

or as
bµν ≡

1

4× 4× π
×
(
(4× S × (Fµ c × Fµ c))−

(
R×

(
F de × F de)))× gµν

R
(67)

Following Barukčić (see Barukčić, 2016a, equation 13), it is n (gµν) ≡ gµν
R

In other words, equation 67
simplifies as

bµν ≡
1

4× 4× π
×
(
(4× S × (Fµ c × Fµ c))−

(
R×

(
F de × F de)))× n (gµν) (68)

Under conditions of D = 4 space-time dimensions, equation 65 simplifies further and the geometrical form of
the stress-energy momentum tensor of the electromagnetic field bµν follows as

bµν ≡
1

4× 4× π
×
(
(Fµ c × Fµ c)−

(
F de × F de))× gµν (69)

The stress-energy momentum tensor of the electromagnetic field is geometrized completely, our conclusion is true.
Quod erat demonstrandum.
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Theorem 3.2 (The geometrical form of the stress-energy tensor Tµν).

The starting point of Einstein’s theory of general relativity is that gravity as such is a property of space-time
geometry. Consequently, Einstein published a geometric theory of gravitation (Einstein, 1916) while Einstein’s
initial hope to construct a purely geometric theory of gravitation in which even the sources of gravitation themselves
would be of geometric origin has still not been fulfilled. Einstein’s field equations have a source term, the stress-
energy tensor of matter, radiation and vacuum et cetera, which is of order two and is still devoid of any geometry
and free of any geometrical significance.
Claim.
In general, the completely geometrical form of the stress-energy momentum tensor of Einstein’s theory of general
relativity is given by (

4× 2× π × γ
c4

)
× Tµν ≡

(
2× π × γ

c4

)
× T × gµν (70)

Proof By Modus Ponens.
If the premise of modus ponens

+1 = +1︸ ︷︷ ︸
(Premise)

(71)

is true, then the following conclusion(
4× 2× π × γ

c4

)
× Tµν ≡

(
2× π × γ

c4

)
× gµν × T (72)

is also true, the absence of any technical errors presupposed. The premise

(+1) = (+1) (73)

is true. Multiplying this premise by Einstein’s stress-energy tensor of general relativity, we obtain

(+1)×
(

4× 2× π × γ
c4

)
× Tµν ≡ (+1)×

(
4× 2× π × γ

c4

)
× Tµν (74)

or (
4× 2× π × γ

c4

)
× Tµν ≡

(
4× 2× π × γ

c4

)
× Tµν (75)

and equally (
4× 2× π × γ

c4

)
× Tµν ≡

(
8× π × γ

c4

)
× D

D
× Tµν (76)

where D denotes the number of space time dimensions. Under conditions where gµν × gµν ≡ D (definition 3.14,
equation 43) the equation before simplifies as(

4× 2× π × γ
c4

)
× Tµν ≡

(
8× π × γ
c4 ×D

)
× (gµν × gµν)× Tµν (77)

or as (
4× 2× π × γ

c4

)
× Tµν ≡

(
8× π × γ
c4 ×D

)
× gµν × (gµν × Tµν) (78)

In accordance with the definition 3.3 the geometrical representation of the stress-energy momentum tensor follows
as (

4× 2× π × γ
c4

)
× Tµν ≡

(
8× π × γ
c4 ×D

)
× T × gµν (79)

or as (
4× 2× π × γ

c4

)
× Tµν ≡

(
8× π × γ × T

c4 ×D

)
× gµν (80)

In accordance with definition 3.1, equation 20 it is E ≡
(

4× 2× π × γ × T
c4 ×D

)
. The geometrical representation

of the stress-energy momentum tensor under conditions of D dimensions follows as(
4× 2× π × γ

c4

)
× Tµν ≡ E × gµν (81)
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Under conditions of D = 4 number of space-time dimensions it is(
4× 2× π × γ

c4

)
× Tµν ≡

(
2× π × γ × T

c4

)
× gµν (82)

In other words, the conclusion that is true.
Quod erat demonstrandum.

Remark. Equation 80 has been derived as
(

4× 2× π × γ
c4

)
× Tµν ≡

(
8× π × γ × T

c4 ×D

)
× gµν . The most

simple geometrical form of the pure stress–energy momentum tensor Tµν follows as

Tµν ≡
(
T

D

)
× gµν (83)

Lemma 3.3. It is (
4× 2× π × γ

c4

)
× Tµν ≡

(
8× π × γ × T

c4 ×D

)
× gµν (84)

Simplifying equation before, the most simple geometrical form of the pure stress–energy momentum tensor Tµν
under conditions of D dimensions is determined by the equation

Tµν ≡
(
T

D

)
× gµν (85)

In more detail, under conditions of D = 4 dimensions the the pure stress–energy momentum tensor Tµν is
determined by the metric, enriched only by view constants and a scalar as(

2× π × γ × T
c4

)
× gµν (86)

However, describing the fundamental stress–energymomentum tensor Tµν , the source term of the gravitational field
in Einstein’s general theory of relativity, as an inherent geometrical structure, as being determined and dependent on
the metric field gµν is associated with several and far reaching consequences. The properties of energy, momentum,
mass, stress et cetera need no longer to be seen as intrinsic properties of matter. Theoretically, the properties which
material systems posses could be determined in virtue of their relation to space-time structures too. The question
could arise whether the energy tensor Tµν at the end could be in different aspects less fundamental than the metric
field gµν itself. Is and why is matter more fundamental (Lehmkuhl, 2011; Lehmkuhl, 2014) than space-time? In
contrast to such a position, is the assumption justified that without the space-time structure encoded in the metric
no energy tensor? To bring it to the point, can space-time (and its geometric structure) exist without matter and
if yes, what kind of existence could this be? Einstein’s starting point was to derive space-time structure from
the properties of material systems. In contrast to this position, theorem 3.2 allow us to see that, on the contrary,
the energy tensor depend on the metric field and is completely determined by the metric field. Consequently, the
matter fields themselves are derivable from the structure of space-time or the very definition of an energy tensor is
determined by space-time structures too. Thus far, the question is not answered definitely, which came first, either
space-time structure or energy tensor.So it is reasonable to ask, is the energy-momentum tensor of matter only
dependent on the structure of space-time or even determined by the structure of space-time or both or none? In
other words, granddaddies either chicken or the egg dilemma is asking for an innovative and a comprehensive
solution and may end up in an Anti-Machian theory. However, this leads us at this point too far afield.
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Theorem 3.3 (Einstein’s field equation’s completely geometrized).

Now, we can derive a completely geometrical form of Einstein field equations under conditions of D dimensi-
ons.
Claim.
In general, the completely geometrical form of Einstein field equation’s (Einstein, 1916; Einstein & de Sitter, 1932;
Einstein, 1917) under conditions of D dimensions is given by

(S × gµν)−
((

R

2

)
× gµν

)
+ (Λ× gµν) ≡ E × gµν (87)

Proof By Modus Ponens.
If the premise of modus ponens

+1 = +1︸ ︷︷ ︸
(Premise)

(88)

is true, then the following conclusion

(S × gµν)−
((

R

2

)
× gµν

)
+ (Λ× gµν) ≡ E × gµν (89)

is also true, again the absence of any technical errors presupposed. The premise

(+1) = (+1) (90)

is true. Multiplying this premise by Einstein’s stress-energy tensor of general relativity, we obtain

(+1)×
(

4× 2× π × γ
c4

)
× Tµν ≡ (+1)×

(
4× 2× π × γ

c4

)
× Tµν (91)

or (
4× 2× π × γ

c4

)
× Tµν ≡

(
2× π × γ

c4

)
× 4× Tµν (92)

Rearranging equation according to the definition 3.2 it is

Rµν −
((

R

2

)
× gµν

)
+ (Λ× gµν) ≡

(
8× π × γ

c4

)
× Tµν (93)

Taking the trace with respect to the metric of both sides of the Einstein field equations one gets

Rµν × gµν −
((

R

2

)
× gµν × gµν

)
+ (Λ× gµν × gµν) ≡

(
8× π × γ

c4

)
× Tµν × gµν (94)

Equation 94 simplifies as

R−
((

R

2

)
×D

)
+ (Λ×D) ≡

(
8× π × γ

c4

)
× T (95)

Dividing equation 95 by the number of dimensions D, it is

R

D
−
(
R

2

)
+ (Λ) ≡

(
8× π × γ × T

c4 ×D

)
(96)

where D is the space-time dimension. In point of fact, due to lemma 3.2, equation 39, it is S ≡
(
R

D

)
. Substituting

this relationship into the equation 96, we obtain

S −
(
R

2

)
+ (Λ) ≡

(
8× π × γ × T

c4 ×D

)
(97)

According to lemma 3.1, equation 20, it is E ≡
(

4× 2× π × γ × T
c4 ×D

)
and equation 97 changes to

S −
(
R

2

)
+ (Λ) ≡ E (98)
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The general geometrical form of Einstein field equation under conditions ofD dimensions is obtained bymultiplying
equation 98 by the metric tensor gµν as

(S × gµν)−
((

R

2

)
× gµν

)
+ (Λ× gµν) ≡ E × gµν (99)

The conclusion is true.
Quod erat demonstrandum.
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Theorem 3.4 (Einstein’s cosmological constant Λ).

An even more severe violation of our trust into physics is created by the cosmological constant Λ, which
specifies as the overall vacuum energy density. Depending on the specific assumptions made, the physical value
(Weinberg, 1987) of the cosmological constant Λ is found to be very contradictory. Now, we can calculate the
value of the cosmological constant Λ very precisely.

Claim.
In general, the value of the cosmological constant Λ is given by

Λ ≡
(

8× π × γ × T
c4 ×D

)
+

(
R

2

)
− S (100)

Proof By Modus Ponens.
If the premise of modus ponens

+1 = +1︸ ︷︷ ︸
(Premise)

(101)

is true, then the following conclusion

Λ ≡
(

8× π × γ × T
c4 ×D

)
+

(
R

2

)
− S (102)

is also true, again the absence of any technical errors presupposed. The premise

(+1) = (+1) (103)

is true. Multiplying this premise by the left part of equation 97 which is S −
(
R

2

)
+ (Λ), we obtain

S −
(
R

2

)
+ (Λ) ≡ S −

(
R

2

)
+ (Λ) (104)

In brief, equation 97 demands that S −
(
R

2

)
+ (Λ) ≡

(
8× π × γ × T

c4 ×D

)
. Therefore, equation 104 changes too

S −
(
R

2

)
+ (Λ) ≡

(
8× π × γ × T

c4 ×D

)
(105)

Rearranging equation 105 yields the exact value of Einstein’s cosmological constant Λ under D dimensions as

Λ ≡
(

8× π × γ × T
c4 ×D

)
+

(
R

2

)
− S (106)

with the consequence that our conclusion is true.

Quod erat demonstrandum.

Remark 3.2. The most important outcome of theorem 3.4 is the discovery that the exact value of Einstein’s
cosmological constant Λ depends on D, the number of space-time dimensions. It may proof as true especially
by measurements that theorem 3.4 induces some reasonable doubts with respect to the constancy of Einstein’s
cosmological constant Λ.
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Theorem 3.5 (Anti cosmological constant Λ).

The value of the anti-cosmological constant can be calculated very precisely.
Claim.
In general, the value of the anti-cosmological constant Λ (Einstein, 1916; Einstein & de Sitter, 1932; Einstein,
1917) is given by

Λ ≡ S +

(
R

2

)
−
(

8× π × γ × T
c4 ×D

)
(107)

Proof By Modus Ponens.
If the premise of modus ponens

+1 = +1︸ ︷︷ ︸
(Premise)

(108)

is true, then the following conclusion

Λ ≡ S +

(
R

2

)
−
(

8× π × γ × T
c4 ×D

)
(109)

is also true, again the absence of any technical errors presupposed. The premise

(+1) = (+1) (110)

is true. Multiplying this premise by Ricci scalar (see definition 3.12), we obtain

(+1)× (R) ≡ (+1)× (R) (111)

or
R ≡ R (112)

Adding Λ and subtracting Λ, the cosmological constant, it is

R− Λ + Λ ≡ R− Λ + Λ (113)

or
R− Λ + Λ ≡ R (114)

According to our definition 3.12 it is
Λ + Λ ≡ R (115)

and therefore
Λ ≡ R− Λ (116)

The exact value of the cosmological constant Λ under conditions of D space-time dimensions was calculated by

theorem 3.4, equation 106 as Λ ≡
(

8× π × γ × T
c4 ×D

)
+

(
R

2

)
− S. The exact value of the anti cosmological

constant Λ can be calculated as

Λ ≡ R−
((

8× π × γ × T
c4 ×D

)
+

(
R

2

)
− S

)
(117)

or as
Λ ≡ R−

(
R

2

)
−
(

8× π × γ × T
c4 ×D

)
+ S ≡ S +

(
R

2

)
−
(

8× π × γ × T
c4 ×D

)
(118)

with the consequence that the conclusion is true.

Quod erat demonstrandum.
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IV. Discussion

Einstein was one of the first to use explicitly the term “unified field theory”in the title (Einstein, 1925) of a
publication in 1925. In the following, Einstein himself published more than thirty technical papers on this topic.
However, Einstein’s unified field theory program, besides of his justified insistence on the possibility and desirability
of a unified field theory, required a substantial amount of new mathematical preliminaries and methods (Barukčić,
2016a, 2016c) and was on the level of the mathematical possibilities at his time technically in vain.
At the heart of this enterprise was the trial to geometrize all fundamental interactions and to provide a completely
geometrized (Einstein, 1950) theory of relativitywas endangered by the cosmological constantΛ, the energy density
of space, or vacuum energy, and the uncertainties associated with the same. To day, there is some experimental
evidence (Perlmutter et al. (Perlmutter et al., 1999) Supernova Cosmology Project and Riess et al. (Riess et al.,
1998) High-Z Supernova Search Team) that the expansion of the universe is accelerating, implying the possibility
of a positive nonzero value for the cosmological constant Λ. Considered Einstein’s insight (see Einstein, 1916,
p. 796) that gµν × gµν ≡ D = +4 (definition 3.14) it was possible to geometrize the stress-energy tensor of
Einstein’s general theory of relativity even under D space-time dimensions. Encouraged by this result, it was
possible to calculate the exact value of the cosmological constant Λ under conditions where gµν × gµν ≡ D
(definition 3.14). However, an answer to the question whether the condition gµν × gµν ≡ D is generally given may
predominantly be found elsewhere. Under conditions where gµν × gµν ≡ D where D is the number of space-time
dimensions, we are able to calculate the exact value of the cosmological constant Λ very precisely as

Λ ≡
(

8× π × γ × T
c4 ×D

)
+

(
R

2

)
− S

and much more than this. For the reasons set out above, the inevitable conclusion is that even the value of the
anti cosmological constant Λ follows as

Λ ≡ S +

(
R

2

)
−
(

8× π × γ × T
c4 ×D

)
.

V. Conclusion

In combinationwith other already published (Barukčić, 2016a, 2016c) papers, Einstein’s general theory of relativity
is completely geometrized. The theoretical value of the cosmological constant Λ was calculated very precisely.
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